Minimizability of developable Riemannian foliations

被引:1
|
作者
Nozawa, Hiraku [1 ]
机构
[1] Ecole Normale Super Lyon, Unite Mathemat Pures & Appl, F-69364 Lyon 07, France
关键词
Riemannian foliations; Taut foliations; Secondary characteristic classes;
D O I
10.1007/s10455-010-9203-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (M, F) be a closed manifold with a Riemannian foliation. We show that the secondary characteristic classes of the Molino's commuting sheaf of (M, F) vanish if (M, F) is developable and pi(1)M is of polynomial growth. By theorems of Alvarez Lopez in (Alvarez Lopez, Ann. Global Anal. Geom., 10: 179-194, 1992) and (Alvarez Lopez, Ann. Pol. Math., 64: 253-265, 1996), our result implies that (M, F) is minimizable under the same conditions. As a corollary, we show that (M, F) is minimizable if F is of codimension 2 and pi(1M) is of polynomial growth.
引用
收藏
页码:119 / 133
页数:15
相关论文
共 50 条
  • [21] Riemannian foliations and geometric quantization
    Lin, Yi
    Loizides, Yiannis
    Sjamaar, Reyer
    Song, Yanli
    JOURNAL OF GEOMETRY AND PHYSICS, 2024, 198
  • [22] Riemannian foliations of bounded geometry
    Alvarez Lopez, Jesus A.
    Kordyukov, Yuri A.
    Leichtnam, Eric
    MATHEMATISCHE NACHRICHTEN, 2014, 287 (14-15) : 1589 - 1608
  • [23] ON RIEMANNIAN FOLIATIONS WITH MINIMAL LEAVES
    LOPEZ, JAA
    ANNALES DE L INSTITUT FOURIER, 1990, 40 (01) : 163 - 176
  • [24] DUALITY AND MINIMALITY IN RIEMANNIAN FOLIATIONS
    MASA, X
    COMMENTARII MATHEMATICI HELVETICI, 1992, 67 (01) : 17 - 27
  • [25] Singular riemannian foliations with sections
    Alexandrino, MM
    ILLINOIS JOURNAL OF MATHEMATICS, 2004, 48 (04) : 1163 - 1182
  • [26] SHEET SPACE OF RIEMANNIAN FOLIATIONS
    MOLINO, P
    ASTERISQUE, 1984, (116) : 180 - 189
  • [27] Mean curvature of Riemannian foliations
    March, P
    MinOo, M
    Ruh, EA
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1996, 39 (01): : 95 - 105
  • [28] Cohomology of singular Riemannian foliations
    Masa, XM
    Rodríguez-Fernández, A
    COMPTES RENDUS MATHEMATIQUE, 2006, 342 (08) : 601 - 604
  • [29] Weitzenbock formulas for Riemannian foliations
    Slesar, Vladimir
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2009, 27 (03) : 362 - 367
  • [30] Manifolds of Maps in Riemannian Foliations
    E. Macias-Virgós
    E. Sanmartín Carbón
    Geometriae Dedicata, 2000, 79 : 143 - 156