Minimizability of developable Riemannian foliations

被引:1
|
作者
Nozawa, Hiraku [1 ]
机构
[1] Ecole Normale Super Lyon, Unite Mathemat Pures & Appl, F-69364 Lyon 07, France
关键词
Riemannian foliations; Taut foliations; Secondary characteristic classes;
D O I
10.1007/s10455-010-9203-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (M, F) be a closed manifold with a Riemannian foliation. We show that the secondary characteristic classes of the Molino's commuting sheaf of (M, F) vanish if (M, F) is developable and pi(1)M is of polynomial growth. By theorems of Alvarez Lopez in (Alvarez Lopez, Ann. Global Anal. Geom., 10: 179-194, 1992) and (Alvarez Lopez, Ann. Pol. Math., 64: 253-265, 1996), our result implies that (M, F) is minimizable under the same conditions. As a corollary, we show that (M, F) is minimizable if F is of codimension 2 and pi(1M) is of polynomial growth.
引用
收藏
页码:119 / 133
页数:15
相关论文
共 50 条
  • [1] Minimizability of developable Riemannian foliations
    Hiraku Nozawa
    Annals of Global Analysis and Geometry, 2010, 38 : 119 - 133
  • [2] Riemannian foliations and quasifolds
    Lin, Yi
    Miyamoto, David
    MATHEMATISCHE ZEITSCHRIFT, 2024, 308 (03)
  • [3] On complex Riemannian foliations
    Ida, Cristian
    XXIII INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES (ISQS-23), 2016, 670
  • [4] DESINGULARIZATION OF RIEMANNIAN FOLIATIONS
    MOLINO, P
    AMERICAN JOURNAL OF MATHEMATICS, 1984, 106 (05) : 1091 - 1106
  • [5] Riemannian foliations of spheres
    Lytchak, Alexander
    Wilking, Burkhard
    GEOMETRY & TOPOLOGY, 2016, 20 (03) : 1257 - 1274
  • [6] Riemannian foliations and tautness
    Tondeur, Philippe
    Proceedings of Symposia in Pure Mathematics, 1993, 54 (01):
  • [7] COMPARING RIEMANNIAN FOLIATIONS WITH TRANSVERSALLY SYMMETRIC FOLIATIONS
    KAMBER, FW
    RUH, EA
    TONDEUR, P
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1988, 27 (03) : 461 - 475
  • [8] Riemannian foliations and tautness
    Tondeur, Philippe
    Proceedings of Symposia in Pure Mathematics, 1993, 54 (03):
  • [9] Harmonic and Riemannian foliations
    Eells, J
    Verjovsky, A
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 1998, 4 (01): : 1 - 12
  • [10] DUALITY FOR RIEMANNIAN FOLIATIONS
    KAMBER, FW
    TONDEUR, P
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS, 1983, 40 : 609 - 618