Superpixel-Based Fast Fuzzy C-Means Clustering for Color Image Segmentation

被引:285
|
作者
Lei, Tao [1 ,2 ]
Jia, Xiaohong [1 ]
Zhang, Yanning [2 ]
Liu, Shigang [3 ]
Meng, Hongying [4 ]
Nandi, Asoke K. [4 ,5 ]
机构
[1] Shaanxi Univ Sci & Technol, Sch Elect & Informat Engn, Xian 710021, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Shaanxi, Peoples R China
[3] Shaanxi Normal Univ, Sch Comp Sci, Xian 710119, Shaanxi, Peoples R China
[4] Brunel Univ London, Dept Elect & Comp Engn, Uxbridge UB8 3PH, Middx, England
[5] Tongji Univ, Coll Elect & Informat Engn, Key Lab Embedded Syst & Serv Comp, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会; 中国博士后科学基金;
关键词
Color image segmentation; fuzzy c-means (FCM) clustering; morphological reconstruction; superpixel; RANDOM-FIELD MODELS; LOCAL INFORMATION; ALGORITHM; RECONSTRUCTION;
D O I
10.1109/TFUZZ.2018.2889018
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A great number of improved fuzzy c-means (FCM) clustering algorithms have been widely used for grayscale and color image segmentation. However, most of them are time-consuming and unable to provide desired segmentation results for color images due to two reasons. The first one is that the incorporation of local spatial information often causes a high computational complexity due to the repeated distance computation between clustering centers and pixels within a local neighboring window. The other one is that a regular neighboring window usually breaks up the real local spatial structure of images and thus leads to a poor segmentation. In this work, we propose a superpixel-based fast FCM clustering algorithm that is significantly faster and more robust than state-of-the-art clustering algorithms for color image segmentation. To obtain better local spatial neighborhoods, we first define a multi-scale morphological gradient reconstruction operation to obtain a superpixel image with accurate contour. In contrast to traditional neighboring window of fixed size and shape, the superpixel image provides better adaptive and irregular local spatial neighborhoods that are helpful for improving color image segmentation. Second, based on the obtained superpixel image, the original color image is simplified efficiently and its histogram is computed easily by counting the number of pixels in each region of the superpixel image. Finally, we implement FCM with histogram parameter on the superpixel image to obtain the final segmentation result. Experiments performed on synthetic images and real images demonstrate that the proposed algorithm provides better segmentation results and takes less time than state-of-the-art clustering algorithms for color image segmentation.
引用
收藏
页码:1753 / 1766
页数:14
相关论文
共 50 条
  • [21] Fuzzy c-means clustering with weighted image patch for image segmentation
    Ji, Zexuan
    Xia, Yong
    Chen, Qiang
    Sun, Quansen
    Xia, Deshen
    Feng, David Dagan
    APPLIED SOFT COMPUTING, 2012, 12 (06) : 1659 - 1667
  • [22] Improved fuzzy C-means clustering for medical image segmentation
    Zhang, Xiaofeng
    Sun, Yujuan
    Gao, Hongjiang
    ICIC Express Letters, 2015, 9 (06): : 1719 - 1725
  • [23] A novel fuzzy c-means clustering algorithm for image segmentation
    Yang, Yong
    Huang, Shuying
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2006, 13E : 2897 - 2901
  • [24] Application of Fuzzy C-means clustering algorithm in image segmentation
    Guo, Rongchuan
    PROCEEDINGS OF THE 2016 4TH INTERNATIONAL CONFERENCE ON ELECTRICAL & ELECTRONICS ENGINEERING AND COMPUTER SCIENCE (ICEEECS 2016), 2016, 50 : 84 - 88
  • [25] Image segmentation with anisotropic weighted fuzzy C-means clustering
    Ji, Zexuan
    Chen, Qiang
    Sun, Quansen
    Xia, Deshen
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2009, 21 (10): : 1451 - 1459
  • [26] Fast Superpixel-Based Hierarchical Approach to Image Segmentation
    Verdoja, Francesco
    Grangetto, Marco
    IMAGE ANALYSIS AND PROCESSING - ICIAP 2015, PT I, 2015, 9279 : 364 - 374
  • [27] Fuzzy c-means clustering with spatial information for image segmentation
    Chuang, KS
    Tzeng, HL
    Chen, S
    Wu, J
    Chen, TJ
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2006, 30 (01) : 9 - 15
  • [28] Image segmentation using probabilistic fuzzy c-means clustering
    Pham, TD
    2001 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL I, PROCEEDINGS, 2001, : 722 - 725
  • [29] Image Segmentation Using a Modified Fuzzy C-Means Clustering
    Hajibabaei, Neda
    Firoozbakht, Mohsen
    2015 2ND INTERNATIONAL CONFERENCE ON KNOWLEDGE-BASED ENGINEERING AND INNOVATION (KBEI), 2015, : 624 - 630
  • [30] Fuzzy c-means clustering based on spatial neighborhood information for image segmentation
    Yanling Li1
    2.College of Computer and Information Technology
    Journal of Systems Engineering and Electronics, 2010, 21 (02) : 323 - 328