Graphene quantum dots piecing together into graphene on nano Au for overall water splitting

被引:21
|
作者
Liang, Junwei [1 ]
Liu, Yuxiang [1 ]
Si, Zhichun [1 ]
Wei, Guodan [1 ]
Weng, Duan [1 ,2 ]
Kang, Feiyu [1 ]
机构
[1] Tsinghua Univ, Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China
[2] Tsinghua Univ, Sch Mat Sci & Engn, Beijing 100086, Peoples R China
关键词
Graphene quantum dots; Graphene; Amide bond; LSPR; Overall water splitting; CARBON DOTS; GOLD NANORODS; HYDROGEN; METAL; PHOTOCATALYST; DESIGN; CONVERSION; EVOLUTION; OXIDATION; SHEETS;
D O I
10.1016/j.carbon.2021.02.100
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Utilizing photocatalysts to split water into H-2 and H2O2 simultaneously is an ideal but challenging process to obtain clean H-2 energy and high valuable H2O2. Most of the photocatalysts currently studied for the overall water splitting are converting water into H-2 and O-2, resulting in further need of gas separation. Here, we reported a photocatalyst which can utilize the nano-Au based localized surface plasmonic resonance (LSPR) effect to produce H-2 and H2O2 simultaneously. Nitrogen doped graphene quantum dots (N-GQDs) pieced together into large graphene through a catalytic process by chloroauric acid, in which dodecahedron nano-Au particles can also be obtained concurrently. Then Au wrapped up by graphene can be in situ formed with good interfaces. Photocatalytic activity tests revealed that the as prepared graphene@Au catalysts show efficient photocatalytic overall water splitting activity with a H-2 evolution rate of 65.6 mu mol g(-1) h(-1) and H2O2 generation rate of 49.7 mu mol g(-1) h(-1). This work provides a feasible route for the facile fabrication of graphene through the bottom-up polycondensation of N-GQDs by amide bonds and new insights into the synthesis of photocatalysts for overall water splitting into H-2 and H2O2. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页码:265 / 272
页数:8
相关论文
共 50 条
  • [31] The toxicity of graphene quantum dots
    Wang, Shujun
    Cole, Ivan S.
    Li, Qin
    RSC ADVANCES, 2016, 6 (92): : 89867 - 89878
  • [32] Quantum Dots in Graphene Nanoribbons
    Wang, Shiyong
    Kharche, Neerav
    Girao, Eduardo Costa
    Feng, Xinliang
    Muellen, Klaus
    Meunier, Vincent
    Fasel, Roman
    Ruffieux, Pascal
    NANO LETTERS, 2017, 17 (07) : 4277 - 4283
  • [33] Chiral Graphene Quantum Dots
    Suzuki, Nozomu
    Wang, Yichun
    Elvati, Paolo
    Qu, Zhi-Bei
    Kim, Kyoungwon
    Jiang, Shuang
    Baumeister, Elizabeth
    Lee, Jaewook
    Yeom, Bongjun
    Bahng, Joong Hwan
    Lee, Jaebeom
    Violi, Angela
    Kotov, Nicholas A.
    ACS NANO, 2016, 10 (02) : 1744 - 1755
  • [34] Magnetism of graphene quantum dots
    Sun, Yuanyuan
    Zheng, Yongping
    Pan, Hongzhe
    Chen, Jie
    Zhang, Weili
    Fu, Lin
    Zhang, Kaiyu
    Tang, Nujiang
    Du, Youwei
    NPJ QUANTUM MATERIALS, 2017, 2
  • [35] Hexagonal graphene quantum dots
    Ghosh, S.
    Schwingenschlogl, U.
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2017, 11 (01):
  • [36] Spintronics with graphene quantum dots
    Droth, Matthias
    Burkard, Guido
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2016, 10 (01): : 75 - 90
  • [37] Graphene based quantum dots
    Zhang, H. G.
    Hu, H.
    Pan, Y.
    Mao, J. H.
    Gao, M.
    Guo, H. M.
    Du, S. X.
    Greber, T.
    Gao, H.-J.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (30)
  • [38] Graphene Quantum Dots for Radiotherapy
    Ruan, Jing
    Wang, Ying
    Li, Fang
    Jia, Renbing
    Zhou, Guangming
    Shao, Chunlin
    Zhu, Liqi
    Cui, Malin
    Yang, Da-Peng
    Ge, Shengfang
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (17) : 14342 - 14355
  • [39] Magnetism of graphene quantum dots
    Yuanyuan Sun
    Yongping Zheng
    Hongzhe Pan
    Jie Chen
    Weili Zhang
    Lin Fu
    Kaiyu Zhang
    Nujiang Tang
    Youwei Du
    npj Quantum Materials, 2
  • [40] Heterogeneity in the fluorescence of graphene and graphene oxide quantum dots
    Bradley, Siobhan J.
    Kroon, Renee
    Laufersky, Geoffry
    Roding, Magnus
    Goreham, Renee V.
    Gschneidtner, Tina
    Schroeder, Kathryn
    Moth-Poulsen, Kasper
    Andersson, Mats
    Nann, Thomas
    MICROCHIMICA ACTA, 2017, 184 (03) : 871 - 878