α-Amylase- and Redox-Responsive Nanoparticles for Tumor-Targeted Drug Delivery

被引:71
|
作者
Li, Yihui [1 ]
Hu, Hang [1 ]
Zhou, Qing [1 ]
Ao, Yanxiao [1 ]
Xiao, Chen [1 ]
Wan, Jiangling [1 ]
Wan, Ying [1 ]
Xu, Huibi [1 ]
Li, Zifu [1 ,2 ]
Yang, Xiangliang [1 ]
机构
[1] Huazhong Univ Sci & Technol, Natl Engn Res Ctr Nanomed, Coll Life Sci & Technol, Wuhan 430074, Peoples R China
[2] Wuhan Inst Biotechnol, East Lake High Tech Zone, High Tech Rd 666, Wuhan 430040, Peoples R China
基金
美国国家科学基金会;
关键词
hydroxyethyl starch; dual stimuli-responsive nanoparticles; alpha-amylase-responsive; redox-responsive; targeted cancer chemotherapy; ALBUMIN-BOUND PACLITAXEL; HYDROXYETHYL STARCH HES; ANTICANCER DRUG; IN-VIVO; INTRACELLULAR DRUG; GENE DELIVERY; ANTITUMOR-ACTIVITY; BREAST-CANCER; CONJUGATE; MICELLES;
D O I
10.1021/acsami.7b04066
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Paclitaxel (PTX) is an effective antineoplastic agent and shows potent antitumor activity against a wide spectrum of cancers. Yet, the wide clinical use of PTX is limited by its poor aqueous solubility and the side effects associated with its current therapeutic formulation. To tackle these obstacles, we report, for the first time, alpha-amylase- and redox-responsive nanoparticles based on hydroxyethyl starch (HES) for the tumor-targeted delivery of PTX. PTX is conjugated onto HES by a redox-sensitive disulfide bond to form HESSS-PTX, which was confirmed by results from NMR, high-performance liquid chromatography-mass spectrometry, and Fourier transform infrared spectrometry. The HESSS-PTX conjugates assemble into stable and monodispersed nanoparticles (NPs), as characterized with Dynamic light scattering, transmission electron microscopy, and atomic force microscopy. In blood, a-amylase will degrade the HES shell and thus decrease the size of the HESSS-PTX NPs, facilitating NP extravasation and penetration into the tumor. A pharmacokinetic study demonstrated that the HESSS-PTX NPs have a longer half-life than that of the commercial PTX formulation (Taxol). As a consequence, HESSS-PTX NPs accumulate more in the tumor compared with the extent of Taxol, as shown in an in vivo imaging study. Under reductive conditions, the HESSS-PTX NPs could disassemble quickly as evidenced by their triggered collapse, burst drug release, and enhanced cytotoxicity against 4T1 tumor cells in the presence of a reducing agent. Collectively, the HESSS-PTX NPs show improved in vivo antitumor efficacy (63.6 vs 52.4%) and reduced toxicity in 4T1 tumor-bearing mice compared with those of Taxol. These results highlight the advantages of HES-based a-amylase- and redox-responsive NPs, showing their great clinical translation potential for cancer chemotherapy.
引用
收藏
页码:19215 / 19230
页数:16
相关论文
共 50 条
  • [41] Click Conjugation of Peptide to Hydrogel Nanoparticles for Tumor-Targeted Drug Delivery
    Qin, Ming
    Zong, Hong
    Kopelman, Raoul
    BIOMACROMOLECULES, 2014, 15 (10) : 3728 - 3734
  • [42] Cell membrane-coated nanoparticles for tumor-targeted drug delivery
    Chai, Zhilan
    Hu, Xuefeng
    Lu, Weiyue
    SCIENCE CHINA-MATERIALS, 2017, 60 (06) : 504 - 510
  • [43] Reduction-responsive Crosslinked Micellar Nanoassemblies for Tumor-targeted Drug Delivery
    Wei Fan
    Yingzhe Wang
    Xin Dai
    Lei Shi
    DeAngelo Mckinley
    Chalet Tan
    Pharmaceutical Research, 2015, 32 : 1325 - 1340
  • [44] Reduction-responsive Crosslinked Micellar Nanoassemblies for Tumor-targeted Drug Delivery
    Fan, Wei
    Wang, Yingzhe
    Dai, Xin
    Shi, Lei
    Mckinley, DeAngelo
    Tan, Chalet
    PHARMACEUTICAL RESEARCH, 2015, 32 (04) : 1325 - 1340
  • [45] Stimuli-Responsive Aliphatic Polycarbonate Nanocarriers for Tumor-Targeted Drug Delivery
    Dominski, Adrian
    Konieczny, Tomasz
    Duale, Khadar
    Krawczyk, Monika
    Pastuch-Gawolek, Gabriela
    Kurcok, Piotr
    POLYMERS, 2020, 12 (12) : 1 - 30
  • [46] Redox-Responsive Drug Delivery Systems: A Chemical Perspective
    Abed, Heba F.
    Abuwatfa, Waad H.
    Husseini, Ghaleb A.
    NANOMATERIALS, 2022, 12 (18)
  • [47] Redox-responsive cisplatin nanogels for anticancer drug delivery
    Zhang, Weiqi
    Tung, Ching-Hsuan
    CHEMICAL COMMUNICATIONS, 2018, 54 (60) : 8367 - 8370
  • [48] Redox-responsive Nanomicelles with Intracellular Targeting and Programmable Drug Release for Targeted Tumor Therapy
    Yang, Yaxin
    Shi, Wei
    Zhang, Ziyi
    Gong, Fawu
    Feng, Xuman
    Guo, Chenxi
    Qi, Yajuan
    Liu, Zhanjun
    CURRENT DRUG DELIVERY, 2024, 21 (02) : 295 - 307
  • [49] Redox-Responsive Nanogel with Intracellular Reconstruction and Programmable Drug Release for Targeted Tumor Therapy
    Tian, Yu
    Tian, Ran
    Li Chen
    Jin, Ronghua
    Feng, Yiming
    Bai, Yongkang
    Chen, Xin
    MACROMOLECULAR RAPID COMMUNICATIONS, 2019, 40 (08)
  • [50] Actively Targeted and Redox Responsive Delivery of Anticancer Drug by Chitosan Nanoparticles
    Mazzotta, Elisabetta
    De Benedittis, Selene
    Qualtieri, Antonio
    Muzzalupo, Rita
    PHARMACEUTICS, 2020, 12 (01)