α-Amylase- and Redox-Responsive Nanoparticles for Tumor-Targeted Drug Delivery

被引:71
|
作者
Li, Yihui [1 ]
Hu, Hang [1 ]
Zhou, Qing [1 ]
Ao, Yanxiao [1 ]
Xiao, Chen [1 ]
Wan, Jiangling [1 ]
Wan, Ying [1 ]
Xu, Huibi [1 ]
Li, Zifu [1 ,2 ]
Yang, Xiangliang [1 ]
机构
[1] Huazhong Univ Sci & Technol, Natl Engn Res Ctr Nanomed, Coll Life Sci & Technol, Wuhan 430074, Peoples R China
[2] Wuhan Inst Biotechnol, East Lake High Tech Zone, High Tech Rd 666, Wuhan 430040, Peoples R China
基金
美国国家科学基金会;
关键词
hydroxyethyl starch; dual stimuli-responsive nanoparticles; alpha-amylase-responsive; redox-responsive; targeted cancer chemotherapy; ALBUMIN-BOUND PACLITAXEL; HYDROXYETHYL STARCH HES; ANTICANCER DRUG; IN-VIVO; INTRACELLULAR DRUG; GENE DELIVERY; ANTITUMOR-ACTIVITY; BREAST-CANCER; CONJUGATE; MICELLES;
D O I
10.1021/acsami.7b04066
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Paclitaxel (PTX) is an effective antineoplastic agent and shows potent antitumor activity against a wide spectrum of cancers. Yet, the wide clinical use of PTX is limited by its poor aqueous solubility and the side effects associated with its current therapeutic formulation. To tackle these obstacles, we report, for the first time, alpha-amylase- and redox-responsive nanoparticles based on hydroxyethyl starch (HES) for the tumor-targeted delivery of PTX. PTX is conjugated onto HES by a redox-sensitive disulfide bond to form HESSS-PTX, which was confirmed by results from NMR, high-performance liquid chromatography-mass spectrometry, and Fourier transform infrared spectrometry. The HESSS-PTX conjugates assemble into stable and monodispersed nanoparticles (NPs), as characterized with Dynamic light scattering, transmission electron microscopy, and atomic force microscopy. In blood, a-amylase will degrade the HES shell and thus decrease the size of the HESSS-PTX NPs, facilitating NP extravasation and penetration into the tumor. A pharmacokinetic study demonstrated that the HESSS-PTX NPs have a longer half-life than that of the commercial PTX formulation (Taxol). As a consequence, HESSS-PTX NPs accumulate more in the tumor compared with the extent of Taxol, as shown in an in vivo imaging study. Under reductive conditions, the HESSS-PTX NPs could disassemble quickly as evidenced by their triggered collapse, burst drug release, and enhanced cytotoxicity against 4T1 tumor cells in the presence of a reducing agent. Collectively, the HESSS-PTX NPs show improved in vivo antitumor efficacy (63.6 vs 52.4%) and reduced toxicity in 4T1 tumor-bearing mice compared with those of Taxol. These results highlight the advantages of HES-based a-amylase- and redox-responsive NPs, showing their great clinical translation potential for cancer chemotherapy.
引用
收藏
页码:19215 / 19230
页数:16
相关论文
共 50 条
  • [1] Redox-responsive nano-carriers as tumor-targeted drug delivery systems
    Raza, Ali
    Hayat, Uzma
    Rasheed, Tahir
    Bilal, Muhammad
    Iqbal, Hafiz M. N.
    EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 2018, 157 : 705 - 715
  • [2] A redox-responsive prodrug for tumor-targeted glutamine restriction
    Prangea, Celine Jasmin
    Ben Sayed, Nadia Yasmina
    Fenga, Bing
    Goepfertd, Christine
    Trujillo, Daniel Ortiz
    Hu, Xile
    Tang, Li
    JOURNAL OF CONTROLLED RELEASE, 2024, 368 : 251 - 264
  • [3] Hypoxia-responsive nanoparticles for tumor-targeted drug delivery
    Li, Yuce
    Jeon, Jueun
    Park, Jae Hyung
    CANCER LETTERS, 2020, 490 : 31 - 43
  • [4] Redox-Responsive Supramolecular Micelles for Targeted Imaging and Drug Delivery to Tumor
    Liu, Tao
    Liu, Zhongning
    Chen, Jiachen
    Jin, Ronghua
    Bai, Yongkang
    Zhou, Yongsheng
    Chen, Xin
    JOURNAL OF BIOMEDICAL NANOTECHNOLOGY, 2018, 14 (06) : 1107 - 1116
  • [5] Transferrin gated mesoporous silica nanoparticles for redox-responsive and targeted drug delivery
    Chen, Xiaolu
    Sun, Hui
    Hu, Jun
    Han, Xia
    Liu, Honglai
    Hu, Ying
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2017, 152 : 77 - 84
  • [6] Hypoxia-responsive polymeric nanoparticles for tumor-targeted drug delivery
    Thambi, Thavasyappan
    Deepagan, V. G.
    Yoon, Hong Yeol
    Han, Hwa Seung
    Kim, Seol-Hee
    Son, Soyoung
    Jo, Dong-Gyu
    Ahn, Cheol-Hee
    Suh, Yung Doug
    Kim, Kwangmeyung
    Kwon, Ick Chan
    Lee, Doo Sung
    Park, Jae Hyung
    BIOMATERIALS, 2014, 35 (05) : 1735 - 1743
  • [7] Redox-Responsive Drug Delivery
    Gauthier, Marc A.
    ANTIOXIDANTS & REDOX SIGNALING, 2014, 21 (05) : 705 - 706
  • [8] Cytochrome c end-capped mesoporous silica nanoparticles as redox-responsive drug delivery vehicles for liver tumor-targeted triplex therapy in vitro and in vivo
    Zhang, Beilu
    Luo, Zhong
    Liu, Junjie
    Ding, Xingwei
    Li, Jinghua
    Cai, Kaiyong
    JOURNAL OF CONTROLLED RELEASE, 2014, 192 : 192 - 201
  • [9] Redox-responsive nanoparticles based on Chondroitin Sulfate and Docetaxel prodrug for tumor targeted delivery of Docetaxel
    Li, Yimu
    Chen, Xuling
    Ji, Jianbo
    Li, Lingbing
    Zhai, Guangxi
    CARBOHYDRATE POLYMERS, 2021, 255
  • [10] Hyaluronic Acid Oligosaccharide Modified Redox-Responsive Mesoporous Silica Nanoparticles for Targeted Drug Delivery
    Zhao, Qinfu
    Geng, Hongjian
    Wang, Ying
    Gao, Yikun
    Huang, Jiahao
    Wang, Yan
    Zhang, Jinghai
    Wang, Siling
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (22) : 20290 - 20299