On spectral methods for solving variable-order fractional integro-differential equations

被引:26
|
作者
Doha, E. H. [1 ]
Abdelkawy, M. A. [2 ,3 ]
Amin, A. Z. M. [4 ]
Lopes, Antonio M. [5 ]
机构
[1] Cairo Univ, Dept Math, Fac Sci, Giza, Egypt
[2] Al Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, Riyadh, Saudi Arabia
[3] Beni Suef Univ, Dept Math, Fac Sci, Bani Suwayf, Egypt
[4] Canadian Int Coll, Inst Engn, Dept Basic Sci, Giza, Egypt
[5] Univ Porto, Fac Engn, UISPA LAETA INEGI, Porto, Portugal
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2018年 / 37卷 / 03期
关键词
Fractional calculus; Variable-order fractional operator; Spectral collocation method; Shifted Jacobi-Gauss-quadrature; GAUSS COLLOCATION METHOD; BOUNDARY-VALUE-PROBLEMS; NUMERICAL-SOLUTION; DIFFERENTIAL-EQUATIONS; EXISTENCE;
D O I
10.1007/s40314-017-0551-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper applies the shifted Jacobi-Gauss collocation (SJ-G-C) method for solving variable-order fractional integro-differential equations (VO-FIDE) with initial conditions. The Riemann-Liouville fractional derivative, , and integral, , of variable order are combined, and the SJ-G-C applied to produce a system of algebraic equations. Numerical experiments demonstrate the applicability and reliability of the algorithm when compared with current methods.
引用
收藏
页码:3937 / 3950
页数:14
相关论文
共 50 条
  • [41] Numerical methods for fourth-order fractional integro-differential equations
    Momani, Shaher
    Noor, Muhammad Aslam
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 182 (01) : 754 - 760
  • [42] Using ANNs Approach for Solving Fractional Order Volterra Integro-differential Equations
    Jafarian, Ahmad
    Rostami, Fariba
    Golmankhaneh, Alireza K.
    Baleanu, Dumitru
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2017, 10 (01) : 470 - 480
  • [43] Using ANNs Approach for Solving Fractional Order Volterra Integro-differential Equations
    Ahmad Jafarian
    Fariba Rostami
    Alireza K. Golmankhaneh
    Dumitru Baleanu
    International Journal of Computational Intelligence Systems, 2017, 10 : 470 - 480
  • [44] Numerical studies for solving fractional integro-differential equations
    Mahdy, A. M. S.
    JOURNAL OF OCEAN ENGINEERING AND SCIENCE, 2018, 3 (02) : 127 - 132
  • [45] Solving fractional integro-differential equations by Aboodh transform
    Raghavendran, Prabakaran
    Gunasekar, Tharmalingam
    Balasundaram, Hemalatha
    Santra, Shyam Sundar
    Majumder, Debasish
    Baleanu, Dumitru
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2024, 32 (03): : 229 - 240
  • [46] Some qualitative properties of nonlinear fractional integro-differential equations of variable order
    Refice, Ahmed
    Souid, Mohammed Said
    Yakar, Ali
    INTERNATIONAL JOURNAL OF OPTIMIZATION AND CONTROL-THEORIES & APPLICATIONS-IJOCTA, 2021, 11 (03): : 68 - 78
  • [47] The novel operational matrices based on 2D-Genocchi polynomials: solving a general class of variable-order fractional partial integro-differential equations
    Haniye Dehestani
    Yadollah Ordokhani
    Mohsen Razzaghi
    Computational and Applied Mathematics, 2020, 39
  • [48] The novel operational matrices based on 2D-Genocchi polynomials: solving a general class of variable-order fractional partial integro-differential equations
    Dehestani, Haniye
    Ordokhani, Yadollah
    Razzaghi, Mohsen
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (04):
  • [49] Spectral Collocation Methods for Fractional Integro-Differential Equations with Weakly Singular Kernels
    Shi, Xiulian
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [50] Approximate solutions for solving nonlinear variable-order fractional Riccati differential equations
    Doha, Eid H.
    Abdelkawy, Mohamed A.
    Amin, Ahmed Z. M.
    Baleanu, Dumitru
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2019, 24 (02): : 176 - 188