A cutter tool monitoring in machining process using Hilbert-Huang transform

被引:65
|
作者
Kalvoda, Tomas [1 ]
Hwang, Yean-Ren [1 ,2 ]
机构
[1] Natl Cent Univ, Dept Mech Engn, Chungli 320, Taiwan
[2] Natl Cent Univ, Inst Optomechatron Engn, Chungli 320, Taiwan
关键词
Tool fault and tool wear detection; Cutter tool monitoring; HHT;
D O I
10.1016/j.ijmachtools.2010.01.006
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents the use of accelerometer signals in order to detect cutter tool wear and tool fault under different cutting conditions. The new method, Hilbert-Huang transform (HHT), was applied to the cutter tool wear and tool fault monitoring and compared to Fourier transform. In the results processed by short-time Fourier transform the cutter tool wear or tool fault is detected by increasing the power in the power spectral density. The acceleration signals (processed by using HHT) change the frequency in the marginal spectra as a result of geometric change of the cutter tool. Results are presented in both frequency domain and time-frequency domain in the case of HHT. The HHT presents data locally without harmonics. This fact permits overcoming of the nonlinearity and nonstationarity of the acceleration signal. Axes x and z are the most sensitive to both HHT and Fourier transform. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:495 / 501
页数:7
相关论文
共 50 条
  • [31] Analysis of partial discharge signal using the Hilbert-Huang transform
    Wang, Xiaodong
    Li, Baoqing
    Liu, Zhiwei
    Roman, Harry T.
    Russo, Onofrio L.
    Chin, Ken K.
    Farmer, Kenneth R.
    IEEE TRANSACTIONS ON POWER DELIVERY, 2006, 21 (03) : 1063 - 1067
  • [32] Interpretation of mechanical signals using an improved Hilbert-Huang transform
    Yang, Wen-Xian
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2008, 22 (05) : 1061 - 1071
  • [33] Underwater target feature extraction using Hilbert-Huang transform
    Li, Xiu-Kun
    Xie, Lei
    Qin, Yu
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2009, 30 (05): : 542 - 546
  • [34] Hilbert-Huang Transform-Based Emitted Sound Signal Analysis for Tool Flank Wear Monitoring
    Raja, J. Emerson
    Kiong, Loo Chu
    Soong, Lim Way
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2013, 38 (08) : 2219 - 2226
  • [35] Analysis of Lamb wave signal using Hilbert-Huang transform
    Zhang, Haiyan
    Yu, Jianbo
    Sun, Xiuli
    Chen, Xianhua
    Cao, Yaping
    Zhendong Ceshi Yu Zhenduan/Journal of Vibration, Measurement and Diagnosis, 2010, 30 (03): : 223 - 226
  • [36] Dance Motion Analysis and Editing using Hilbert-Huang Transform
    Dong, Ran
    Cai, Dongsheng
    Asai, Nobuyoshi
    ACM SIGGRAPH 2017 TALKS, 2017,
  • [37] Analysis of tremor in multiple sclerosis using Hilbert-Huang Transform
    Ayache, S. -S.
    Al-ani, T.
    Farhat, W. -H.
    Zouari, H. -G.
    Creange, A.
    Lefaucheur, J. -P.
    NEUROPHYSIOLOGIE CLINIQUE-CLINICAL NEUROPHYSIOLOGY, 2015, 45 (06): : 475 - 484
  • [38] Wear detection in gear system using Hilbert-Huang transform
    Li, Hui
    Zhang, Yuping
    Zheng, Haiqi
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2006, 20 (11) : 1781 - 1789
  • [39] Using Hilbert-Huang Transform to characterize intrusions in computer networks
    Wang, Weihong
    Pei, Kai
    Jin, Xiaogang
    ICNC 2007: THIRD INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 5, PROCEEDINGS, 2007, : 749 - +
  • [40] QUANTIFICATION OF RESPIRATORY SINUS ARRHYTHMIA USING HILBERT-HUANG TRANSFORM
    Kuo, Terry B. J.
    Yang, Cheryl C. H.
    Huang, Norden E.
    ADVANCES IN DATA SCIENCE AND ADAPTIVE ANALYSIS, 2009, 1 (02) : 295 - 307