A fast eigenvalue algorithm for Hankel matrices

被引:17
|
作者
Luk, FT [1 ]
Qiao, SZ
机构
[1] Rensselaer Polytech Inst, Dept Comp Sci, Troy, NY 12180 USA
[2] McMaster Univ, Dept Comp & Software, Hamilton, ON L8S 4K1, Canada
关键词
Hankel matrix; toeplitz matrix; circulant matrix; fast Fourier transform; Lanczos tridiagonalization; eigenvalue decomposition; complex-symmetric matrix; complex-orthogonal transformations;
D O I
10.1016/S0024-3795(00)00084-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an algorithm that can find all the eigenvalues of an n x n complex Hankel matrix in O(n(2) log n) operations. Our scheme consists of an O(n(2) log n) Lanczos-type tridiagonalization procedure and an O(n) QR-type diagonalization method. (C) 2000 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:171 / 182
页数:12
相关论文
共 50 条
  • [31] FAST HANKEL TRANSFORM ALGORITHM.
    Hansen, Eric W.
    IEEE Transactions on Acoustics, Speech, and Signal Processing, 1985, ASSP-33 (03): : 666 - 671
  • [32] A NEW ALGORITHM FOR THE EIGENVALUE PROBLEM OF MATRICES
    CAI, DY
    HONG, J
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 1989, 7 (03) : 313 - 320
  • [33] NEW FAST ALGORITHMS FOR SYSTEMS WITH HANKEL AND TOEPLITZ MATRICES
    TYRTYSHNIKOV, EE
    USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1989, 29 (03): : 1 - 6
  • [34] FAST POLYNOMIAL TRANSFORMS BASED ON TOEPLITZ AND HANKEL MATRICES
    Townsend, Alex
    Webb, Marcus
    Olver, Sheehan
    MATHEMATICS OF COMPUTATION, 2018, 87 (312) : 1913 - 1934
  • [35] Fast algorithms for calculating the eigenvalues of normal Hankel matrices
    Abdikalykov A.K.
    Ikramov K.D.
    Chugunov V.N.
    Moscow University Computational Mathematics and Cybernetics, 2014, 38 (1) : 1 - 7
  • [36] Fast Estimation of Tridiagonal Matrices Largest Eigenvalue
    Coelho, Diego F. G.
    Dimitrov, Vassil S.
    2017 IEEE 30TH CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2017,
  • [37] The smallest eigenvalue of large Hankel matrices generated by a singularly perturbed Laguerre weight
    Zhu, Mengkun
    Chen, Yang
    Li, Chuanzhong
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (07)
  • [38] THE SMALLEST EIGENVALUE OF LARGE HANKEL MATRICES ASSOCIATED WITH A SINGULARLY PERTURBED GAUSSIAN WEIGHT
    Wang, Dan
    Zhu, Mengkun
    Chen, Yang
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (01) : 153 - 160
  • [39] Schur algorithm for ill-conditioned Hankel matrices
    Sharma, M.
    Chun, J.
    Kailath, T.
    Conference Record of the Asilomar Conference on Signals, Systems and Computers, 1999, 1 : 437 - 439
  • [40] EFFICIENT ALGORITHM FOR TOEPLITZ PLUS HANKEL-MATRICES
    GOHBERG, I
    KOLTRACHT, I
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 1989, 12 (01) : 136 - 142