Silicon Neuron dedicated to Memristive Spiking Neural Networks

被引:0
|
作者
Lecerf, Gwendal [1 ]
Tomas, Jean [1 ]
Boyn, Soeren [2 ,3 ]
Girod, Stephanie [2 ,3 ]
Mangalore, Ashwin [1 ]
Grollier, Julie [2 ,3 ]
Saighi, Sylvain [1 ]
机构
[1] Univ Bordeaux, IMS, UMR 5218, F-33400 Talence, France
[2] Unite Mixte Phys CNRS Thales, F-91767 Palaiseau, France
[3] Univ Paris 11, F-91405 Orsay, France
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Since memristor came out in 2008, neuromorphic designers investigated the possibility of using memristors as plastic synapses due to their intrinsic properties of plasticity and weight storage. In this paper we will present a silicon neuron compatible with memristive synapses in order to build analog neural network. This neuron mainly includes current conveyor (CCII) for driving memristor as excitatory or inhibitory synapses and spike generator whose waveform is dedicated to synaptic plasticity algorithm based on Spike Timing Dependent Plasticity (STDP). This silicon neuron has been fabricated, characterized and finally connected with a ferroelectric memristor to validate the synaptic weight updating principle.
引用
收藏
页码:1568 / 1571
页数:4
相关论文
共 50 条
  • [21] Revealing the Secrets of Spiking Neural Networks: The Case of Izhikevich Neuron
    Garaffa, Luiza C.
    Aljuffri, Abdullah
    Reinbrecht, Cezar
    Hamdioui, Said
    Taouil, Mottaqiallah
    Sepulveda, Johanna
    2021 24TH EUROMICRO CONFERENCE ON DIGITAL SYSTEM DESIGN (DSD 2021), 2021, : 514 - 518
  • [22] Extension of Neuron Machine Neurocomputing Architecture for Spiking Neural Networks
    Ahn, Jerry B.
    2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,
  • [23] Photonic Spiking Neural Networks and Graphene-on-Silicon Spiking Neurons
    Jha, Aashu
    Huang, Chaoran
    Peng, Hsuan-Tung
    Shastri, Bhavin
    Prucnal, Paul R.
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2022, 40 (09) : 2901 - 2914
  • [24] Inter-neuron communication strategies for spiking neural networks
    Tuffy, F.
    McDaid, L. J.
    Kwan, V. W.
    Alderman, J.
    McGinnity, T. M.
    Santos, J. A.
    Kelly, P. M.
    Sayers, H.
    NEUROCOMPUTING, 2007, 71 (1-3) : 30 - 44
  • [25] An Implementation of a Spiking Neural Network Using Digital Spiking Silicon Neuron Model on a SIMD Processor
    Hori, Sansei
    Zapata, Mireya
    Madrenas, Jordi
    Morie, Takashi
    Tamukoh, Hakaru
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2017, PT I, 2017, 10613 : 437 - 438
  • [26] Examining the Robustness of Spiking Neural Networks on Non-ideal Memristive Crossbars
    Bhattacharjee, Abhiroop
    Kim, Youngeun
    Moitra, Abhishek
    Panda, Priyadarshini
    2022 ACM/IEEE INTERNATIONAL SYMPOSIUM ON LOW POWER ELECTRONICS AND DESIGN, ISLPED 2022, 2022,
  • [27] An Efficient and Accurate Memristive Memory for Array-Based Spiking Neural Networks
    Das, Hritom
    Febbo, Rocco D.
    Tushar, S. N. B.
    Chakraborty, Nishith N.
    Liehr, Maximilian
    Cady, Nathaniel C.
    Rose, Garrett S.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2023, 70 (12) : 4804 - 4815
  • [28] Sneak Paths Effects in CBRAM Memristive Devices Arrays for Spiking Neural Networks
    Roclin, David
    Bichler, Olivier
    Gamrat, Christian
    Klein, Jacques-Olivier
    2014 IEEE/ACM INTERNATIONAL SYMPOSIUM ON NANOSCALE ARCHITECTURES (NANOARCH), 2014, : 13 - 18
  • [29] Memristive Hodgkin-Huxley Spiking Neuron Model for Reproducing Neuron Behaviors
    Fang, Xiaoyan
    Duan, Shukai
    Wang, Lidan
    FRONTIERS IN NEUROSCIENCE, 2021, 15
  • [30] Efficient Neuron Architecture for FPGA-based Spiking Neural Networks
    Wan, Lei
    Luo, Yuling
    Song, Shuxiang
    Harkin, Jim
    Liu, Junxiu
    2016 27TH IRISH SIGNALS AND SYSTEMS CONFERENCE (ISSC), 2016,