Silicon Neuron dedicated to Memristive Spiking Neural Networks

被引:0
|
作者
Lecerf, Gwendal [1 ]
Tomas, Jean [1 ]
Boyn, Soeren [2 ,3 ]
Girod, Stephanie [2 ,3 ]
Mangalore, Ashwin [1 ]
Grollier, Julie [2 ,3 ]
Saighi, Sylvain [1 ]
机构
[1] Univ Bordeaux, IMS, UMR 5218, F-33400 Talence, France
[2] Unite Mixte Phys CNRS Thales, F-91767 Palaiseau, France
[3] Univ Paris 11, F-91405 Orsay, France
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Since memristor came out in 2008, neuromorphic designers investigated the possibility of using memristors as plastic synapses due to their intrinsic properties of plasticity and weight storage. In this paper we will present a silicon neuron compatible with memristive synapses in order to build analog neural network. This neuron mainly includes current conveyor (CCII) for driving memristor as excitatory or inhibitory synapses and spike generator whose waveform is dedicated to synaptic plasticity algorithm based on Spike Timing Dependent Plasticity (STDP). This silicon neuron has been fabricated, characterized and finally connected with a ferroelectric memristor to validate the synaptic weight updating principle.
引用
收藏
页码:1568 / 1571
页数:4
相关论文
共 50 条
  • [1] Design of NbOx memristive neuron and its application in spiking neural networks
    Gu Ya-Na
    Liang Yan
    Wang Guang-Yi
    Xia Chen-Yang
    ACTA PHYSICA SINICA, 2022, 71 (11)
  • [2] A CMOS-based Neuron Circuit for Spiking Neural Networks with Memristive Synapse
    Liu, Hai-jun
    Li, Ji-wei
    Li, Zhi-wei
    Li, Qing-jiang
    Diao, Jie-tao
    2018 INTERNATIONAL CONFERENCE ON COMPUTER, COMMUNICATIONS AND MECHATRONICS ENGINEERING (CCME 2018), 2018, 332 : 550 - 555
  • [3] Spiking Neural Networks with Nonidealities from Memristive Silicon Oxide Devices
    Vu, Viet Cuong
    Kenyon, Anthony
    Joksas, Dovydas
    Mehonic, Adnan
    Mannion, Daniel J.
    Ng, Wing H.
    2024 IEEE 24TH INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY, NANO 2024, 2024, : 46 - 50
  • [4] Hebbian Learning in Spiking Neural Networks With Nanocrystalline Silicon TFTs and Memristive Synapses
    Cantley, Kurtis D.
    Subramaniam, Anand
    Stiegler, Harvey J.
    Chapman, Richard A.
    Vogel, Eric M.
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2011, 10 (05) : 1066 - 1073
  • [5] Plasticity in memristive devices for spiking neural networks
    Saighi, Sylvain
    Mayr, Christian G.
    Serrano-Gotarredona, Teresa
    Schmidt, Heidemarie
    Lecerf, Gwendal
    Tomas, Jean
    Grollier, Julie
    Boyn, Soeren
    Vincent, Adrien F.
    Querlioz, Damien
    La Barbera, Selina
    Alibart, Fabien
    Vuillaume, Dominique
    Bichler, Olivier
    Gamrat, Christian
    Linares-Barranco, Bernabe
    FRONTIERS IN NEUROSCIENCE, 2015, 9
  • [6] Towards scalable memristive hardware for spiking neural networks
    Chen, Peng
    Zhang, Bihua
    He, Enhui
    Xiao, Yu
    Liu, Fenghao
    Lin, Peng
    Wang, Zhongrui
    Pan, Gang
    MATERIALS HORIZONS, 2025,
  • [7] Backpropagating Errors Through Memristive Spiking Neural Networks
    Zhou, Peng
    Choi, Dong-Uk
    Kang, Sung-Mo
    Eshraghian, Jason K.
    2023 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS, 2023,
  • [8] Excitatory and Inhibitory Memristive Synapses for Spiking Neural Networks
    Lecerf, Gwendal
    Tomas, Jean
    Saighi, Sylvain
    2013 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2013, : 1616 - 1619
  • [9] Memristive Spiking Neural Networks Trained with Unsupervised STDP
    Zhou, Errui
    Fang, Liang
    Yang, Binbin
    ELECTRONICS, 2018, 7 (12)
  • [10] Neuron Fault Tolerance in Spiking Neural Networks
    Spyrou, Theofilos
    El-Sayed, Sarah A.
    Afacan, Engin
    Camunas-Mesa, Luis A.
    Linares-Barranco, Bernabe
    Stratigopoulos, Haralampos-G
    PROCEEDINGS OF THE 2021 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE 2021), 2021, : 743 - 748