A Multiparametric MRI-Based Radiomics Analysis to Efficiently Classify Tumor Subregions of Glioblastoma: A Pilot Study in Machine Learning

被引:18
|
作者
Chiu, Fang-Ying [1 ]
Le, Nguyen Quoc Khanh [2 ,3 ,4 ]
Chen, Cheng-Yu [2 ,3 ,4 ,5 ,6 ]
机构
[1] Tzu Chi Univ, Res Ctr Sustainable Dev Goals SDGs, Hualien 970374, Taiwan
[2] Taipei Med Univ, Coll Med, Profess Master Program Artificial Intelligence Me, Taipei 106339, Taiwan
[3] Taipei Med Univ, Res Ctr Artificial Intelligence Med, Taipei 106339, Taiwan
[4] Taipei Med Univ Hosp, Translat Imaging Res Ctr, Taipei 110301, Taiwan
[5] Taipei Med Univ, Sch Med, Dept Radiol, Coll Med, Taipei 110301, Taiwan
[6] Taipei Med Univ Hosp, Dept Med Imaging, Taipei 110301, Taiwan
关键词
glioblastoma; MRI; quantitative imaging; oncologic imaging; radiomics; texture analysis; ground truth; machine learning; precision medicine; SURVIVAL; CLASSIFICATION; SYSTEM;
D O I
10.3390/jcm10092030
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Glioblastoma multiforme (GBM) carries a poor prognosis and usually presents with heterogenous regions of a necrotic core, solid part, peritumoral tissue, and peritumoral edema. Accurate demarcation on magnetic resonance imaging (MRI) between the active tumor region and perifocal edematous extension is essential for planning stereotactic biopsy, GBM resection, and radiotherapy. We established a set of radiomics features to efficiently classify patients with GBM and retrieved cerebral multiparametric MRI, including contrast-enhanced T1-weighted (T1-CE), T2-weighted, T2-weighted fluid-attenuated inversion recovery, and apparent diffusion coefficient images from local patients with GBM. A total of 1316 features on the raw MR images were selected for each annotated area. A leave-one-out cross-validation was performed on the whole dataset, the different machine learning and deep learning techniques tested; random forest achieved the best performance (average accuracy: 93.6% necrosis, 90.4% solid part, 95.8% peritumoral tissue, and 90.4% peritumoral edema). The features from the enhancing tumor and the tumor shape elongation of peritumoral edema region for high-risk groups from T1-CE. The multiparametric MRI-based radiomics model showed the efficient classification of tumor subregions of GBM and suggests that prognostic radiomic features from a routine MRI exam may also be significantly associated with key biological processes that affect the response to chemotherapy in GBM.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Machine-learning approach to predict molecular subgroups of medulloblastoma using multiparametric MRI-based tumor radiomics
    Saju, Ann Christy
    Chatterjee, Abhishek
    Sahu, Arpita
    Gupta, Tejpal
    Krishnatry, Rahul
    Mokal, Smruti
    Sahay, Ayushi
    Epari, Sridhar
    Prasad, Maya
    Chinnaswamy, Girish
    Agarwal, Jai Prakash
    Goda, Jayant S.
    BRITISH JOURNAL OF RADIOLOGY, 2022, 95 (1134):
  • [2] Multiparametric MRI-Based Radiomics Signature with Machine Learning for Preoperative Prediction of Prognosis Stratification in Pediatric Medulloblastoma
    Luo, Yi
    Zhuang, Yijiang
    Zhang, Siqi
    Wang, Jingsheng
    Teng, Songyu
    Zeng, Hongwu
    ACADEMIC RADIOLOGY, 2024, 31 (04) : 1629 - 1642
  • [3] Multiparametric MRI-Based Interpretable Radiomics Machine Learning Model Differentiates Medulloblastoma and Ependymoma in Children: A Two-Center Study
    Yimit, Yasen
    Yasin, Parhat
    Tuersun, Abudouresuli
    Wang, Jingru
    Wang, Xiaohong
    Huang, Chencui
    Abudoubari, Saimaitikari
    Chen, Xingzhi
    Ibrahim, Irshat
    Nijiati, Pahatijiang
    Wang, Yunling
    Zou, Xiaoguang
    Nijiati, Mayidili
    ACADEMIC RADIOLOGY, 2024, 31 (08) : 3384 - 3396
  • [4] The Nomogram of MRI-based Radiomics with Complementary Visual Features by Machine Learning Improves Stratification of Glioblastoma Patients: A Multicenter Study
    Xu, Yuyun
    He, Xiaodong
    Li, Yumei
    Pang, Peipei
    Shu, Zhenyu
    Gong, Xiangyang
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2021, 54 (02) : 571 - 583
  • [5] Multiparametric MRI-based radiomics analysis for the prediction of breast tumor regression patterns after neoadjuvant chemotherapy
    Zhuang, Xiaosheng
    Chen, Chi
    Liu, Zhenyu
    Zhang, Liulu
    Zhou, Xuezhi
    Cheng, Minyi
    Ji, Fei
    Zhu, Teng
    Lei, Chuqian
    Zhang, Junsheng
    Jiang, Jingying
    Tian, Jie
    Wang, Kun
    TRANSLATIONAL ONCOLOGY, 2020, 13 (11):
  • [6] Predictive Study of Machine Learning-Based Multiparametric MRI Radiomics Nomogram for Perineural Invasion in Rectal Cancer: A Pilot Study
    Wang, Yueyan
    Chen, Aiqi
    Wang, Kai
    Zhao, Yihui
    Du, Xiaomeng
    Chen, Yan
    Lv, Lei
    Huang, Yimin
    Ma, Yichuan
    JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2025, 38 (02): : 1224 - 1235
  • [7] Machine-learning-based classification of Glioblastoma in multiparametric MRI
    Cui, Ge
    Jeong, Jiwoong Jason
    Lei, Yang
    Wang, Tonghe
    Liu, Tian
    Curran, Walter J.
    Mao, Hui
    Yang, Xiaofeng
    MEDICAL IMAGING 2019: COMPUTER-AIDED DIAGNOSIS, 2019, 10950
  • [8] Pretreatment Multiparametric MRI-Based Radiomics Analysis for the Diagnosis of Breast Phyllodes Tumors
    Ma, Xiaowen
    Gong, Jing
    Hu, Feixiang
    Tang, Wei
    Gu, Yajia
    Peng, Weijun
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2023, 57 (02) : 633 - 645
  • [9] MRI-based whole-tumor radiomics to classify the types of pediatric posterior fossa brain tumor
    Wang, S.
    Wang, G.
    Zhang, W.
    He, J.
    Sun, W.
    Yang, M.
    Sun, Y.
    Peet, A.
    NEUROCHIRURGIE, 2022, 68 (06) : 601 - 607
  • [10] Radiomics-based machine learning model for efficiently classifying transcriptome subtypes in glioblastoma patients from MRI
    Le, Nguyen Quoc Khanh
    Hung, Truong Nguyen Khanh
    Do, Duyen Thi
    Lam, Luu Ho Thanh
    Dang, Luong Huu
    Huynh, Tuan-Tu
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 132