Scale-free and characteristic time in urban soundscape

被引:9
|
作者
de Sousa, Ivandson Praeiro [1 ,2 ]
dos Santos Lima, Gustavo Zampier [2 ]
Sousa-Lima, Renata [3 ,4 ]
Corso, Gilberto [5 ]
机构
[1] Univ Fed Rio Grande do Norte, Dept Fis Teor & Expt, BR-59078970 Natal, RN, Brazil
[2] Univ Fed Rio Grande do Norte, Escola Ciencias & Tecnol, BR-59078970 Natal, RN, Brazil
[3] Univ Fed Rio Grande do Norte, Dept Fisiol & Comportamento, BR-59078970 Natal, RN, Brazil
[4] Univ Fed Rio Grande do Norte, Lab Bioacust, BR-59078970 Natal, RN, Brazil
[5] Univ Fed Rio Grande do Norte, Dept Biofis & Farmacol, BR-59078970 Natal, RN, Brazil
关键词
Soundscape; Power-law; Log-normal; Quiet-times; Criticality; SELF-ORGANIZED CRITICALITY; SLEEP-WAKE TRANSITIONS;
D O I
10.1016/j.physa.2019.121557
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work we study the statistic of the nocturnal and diurnal urban soundscape. Our focus is on the temporal distribution of the quiet-times (background noise) and sound times (noise bursts) in audio recordings. We analyzed one hour samples uninterruptedly of urban environment soundscape for ten days and nights. The histogram for the nocturnal quiet-time follows a power-law like scale-free distribution spanning three orders of magnitude, from 0.03s to 30s, with exponent alpha = 1.65 +/- 0.03. The diurnal histogram distributions of the quiet-times reveals a power-law with the same exponent value, but the statistic distribution, in this case, shows an overlap of an additional urban acoustic phenomenon corresponding to time duration above is. On the other side, the sound-times, both diurnal and nocturnal, follow a log-normal distribution with mean value around 0.1s, which characterizes a typical temporal characteristic-scale for the duration of sounds in the urban soundscape. We discuss, in the paper, the coexistence between the scale-free distribution of silences and the typical time scale of sounds. (C) 2019 Published by Elsevier B.V.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Scale-free statistics of time interval between successive earthquakes
    Abe, S
    Suzuki, N
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 350 (2-4) : 588 - 596
  • [22] DISCRETE-TIME CONSENSUS IN A SCALE-FREE BUYER NETWORK
    Sodsee, Sunantha
    Komkhao, Maytiyanin
    Pan, Lin
    Li, Zhong
    Halang, Wolfgang A.
    Tang, Wallace K. S.
    INTELLIGENT DECISION MAKING SYSTEMS, VOL. 2, 2010, : 445 - +
  • [23] Catastrophes in scale-free networks
    Zhou, T
    Wang, BH
    CHINESE PHYSICS LETTERS, 2005, 22 (05) : 1072 - 1075
  • [24] Growing scale-free simplices
    Kovalenko, Kiriil
    Sendina-Nadal, Irene
    Khalil, Nagi
    Dainiak, Alex
    Musatov, Daniil
    Raigorodskii, Andrei M.
    Alfaro-Bittner, Karin
    Barzel, Baruch
    Boccaletti, Stefano
    COMMUNICATIONS PHYSICS, 2021, 4 (01)
  • [25] Branches in scale-free trees
    Dondajewski M.
    Szymański J.
    Journal of Mathematical Sciences, 2009, 161 (6) : 961 - 968
  • [26] Scale-Free Music of the Brain
    Wu, Dan
    Li, Chao-Yi
    Yao, De-Zhong
    PLOS ONE, 2009, 4 (06):
  • [27] Sandpile on scale-free networks
    Goh, KI
    Lee, DS
    Kahng, B
    Kim, D
    PHYSICAL REVIEW LETTERS, 2003, 91 (14)
  • [28] Scale-free distribution of silences
    de Sousa, Ivandson P.
    dos Santos Lima, Gustavo Zampier
    Oliveira, Eliziane G.
    Lage Duarte, Marina Henriques
    Alves-Gomes, Jose A.
    Lopes, Lara C.
    Ferreira, Luane S.
    Sousa-Lima, Renata S.
    Corso, Gilberto
    PHYSICAL REVIEW E, 2022, 105 (01)
  • [29] The paradox of the scale-free discs
    Princeton University Observatory, Princeton, NJ 08544-1001, United States
    不详
    Mon. Not. R. Astron. Soc., 3 (599-609):
  • [30] Quasistatic scale-free networks
    Mukherjee, G
    Manna, SS
    PHYSICAL REVIEW E, 2003, 67 (01)