Functional annotation of genomic data with metabolic inference

被引:5
|
作者
Walzem, R. L. [1 ]
Baillie, R. A.
Wiest, N.
Davis, R.
Watkins, S. M.
Porter, T. E.
Simon, J.
Cogburn, L. A.
机构
[1] Texas A&M Univ, Dept Poultry Sci, College Stn, TX 77843 USA
[2] Lip Technol Inc, W Sacramento, CA 95691 USA
[3] Univ Maryland, Dept Anim & Avian Sci, College Pk, MD 20742 USA
[4] INRA, Rech Avicoles Stn, F-37380 Nouzilly, France
[5] Univ Delaware, Dept Anim & Food Sci, Newark, DE 19716 USA
关键词
genetic selection; adipose; metabolomics; chicken lipid;
D O I
10.1093/ps/86.7.1510
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
Metabolomics is an appealing new approach in systems biology aimed at enabling an improved understanding of the dynamic biochemical composition of living systems. Biological systems are remarkably complex. Importantly, metabolites are the end products of cellular regulatory processes, and their concentrations reflect the ultimate response of a biological system to genetic or environmental changes. In this article, we describe the components of lipid metabolomics and then use them to investigate the metabolic basis for increased abdominal adiposity in 2 strains of divergently selected chickens. Lipid metabolomics were chosen due to the availability of well-developed analytical platforms and the pervasive physiological importance of lipids in metabolism. The analysis Suggests that metabolic shifts that result in increased abdominal adiposity are not universal and vary with genetic background. Metabolomics can be used to reverse engineer selection pro-rams through superior metabolic descriptions that can then be associated with specific gene networks and transcriptional profiles.
引用
收藏
页码:1510 / 1522
页数:13
相关论文
共 50 条
  • [21] Genomic logic, allelic inference, and the functional classification of genes
    Greenspan, NS
    [J]. PERSPECTIVES IN BIOLOGY AND MEDICINE, 1998, 41 (03) : 409 - 416
  • [22] Comparison of 432 Pseudomonas strains through integration of genomic, functional, metabolic and expression data
    Jasper J. Koehorst
    Jesse C. J. van Dam
    Ruben G. A. van Heck
    Edoardo Saccenti
    Vitor A. P. Martins dos Santos
    Maria Suarez-Diez
    Peter J. Schaap
    [J]. Scientific Reports, 6
  • [23] Comparison of 432 Pseudomonas strains through integration of genomic, functional, metabolic and expression data
    Koehorst, Jasper J.
    van Dam, Jesse C. J.
    van Heck, Ruben G. A.
    Saccenti, Edoardo
    dos Santos, Vitor A. P. Martins
    Suarez-Diez, Maria
    Schaap, Peter J.
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [24] Functional annotation and biological interpretation of proteomics data
    Carnielli, Carolina M.
    Winck, Flavia V.
    Leme, Adriana F. Paes
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 2015, 1854 (01): : 46 - 54
  • [25] Facilitating functional annotation of chicken microarray data
    Buza, Teresia J.
    Kumar, Ranjit
    Gresham, Cathy R.
    Burgess, Shane C.
    McCarthy, Fiona M.
    [J]. BMC BIOINFORMATICS, 2009, 10 : S2
  • [26] Facilitating functional annotation of chicken microarray data
    Teresia J Buza
    Ranjit Kumar
    Cathy R Gresham
    Shane C Burgess
    Fiona M McCarthy
    [J]. BMC Bioinformatics, 10
  • [27] Integrated access to metabolic and genomic data
    Karp, PD
    Paley, S
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 1996, 3 (01) : 191 - 212
  • [28] Improving genomic selection across breeds and across generations with functional annotation
    Hayes, B.
    Chamberlain, A. J.
    Daetwyler, H.
    Jagt, C. J. Vander
    Goddard, M. E.
    [J]. JOURNAL OF ANIMAL SCIENCE, 2016, 94 : 201 - 201
  • [29] Gene fusions and gene duplications: relevance to genomic annotation and functional analysis
    Margrethe H Serres
    Monica Riley
    [J]. BMC Genomics, 6
  • [30] FUNCTIONAL GENOMIC ANNOTATION AND BIOLOGICAL INTERPRETATION OF ASD COMMON GENETIC RISK
    Bicks, Lucy
    Margolis, Michael
    Guo, Qiuyu
    Geschwind, Daniel
    [J]. EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2023, 75 : S44 - S45