On the images of multilinear maps of matrices over finite-dimensional division algebras

被引:6
|
作者
Li, Cailan [1 ]
Tsui, Man Cheung [2 ]
机构
[1] Univ Calif Berkeley, Berkeley, CA 94720 USA
[2] Univ Calif Los Angeles, Los Angeles, CA USA
基金
美国国家科学基金会;
关键词
Multilinear polynomial; Division algebra; Reduced trace;
D O I
10.1016/j.laa.2015.12.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be a central simple algebra finite-dimensional over its center F of characteristic 0. We will show that every element of reduced trace 0 in R can be expressed as [a, [c, b]] + lambda[c, [a, b]] for some a, b, c is an element of R where lambda not equal 0, -1. In addition, let D be a division algebra satisfying the conditions above. We will also show that the set of values of any nonzero multilinear polynomial of degree at most three, with coefficients from the center F of D, evaluated on M-k(D), k >= 2, contains all matrices of reduced trace 0. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:399 / 410
页数:12
相关论文
共 50 条