Deterministic blow-ups of minimal nondeterministic finite automata over a fixed alphabet

被引:0
|
作者
Jirasek, Jozef [1 ]
Jiraskova, Calina [2 ]
Szabari, Alexander [1 ]
机构
[1] Safarik Univ, Inst Comp Sci, Jesenna 5, Kosice 04154, Slovakia
[2] Slovak Acad Sci, Math Inst, Kosice, Slovakia
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show that for all integers n and alpha such that n <= alpha <= 2(n), there exists a minimal nondeterministic finite automaton of n states with a four-letter input alphabet whose equivalent minimal deterministic finite automaton has exactly a states. It follows that in the case of a four-letter alphabet, there are no "magic numbers", i.e., the holes in the hierarchy. This improves a similar result obtained by Geffert for a growing alphabet of size n + 2.
引用
收藏
页码:254 / +
页数:3
相关论文
共 48 条
  • [1] Deterministic blow-ups of minimal nondeterministic finite automata over a fixed alphabet
    Jirasek, Jozef
    Jiraskova, Galina
    Szabari, Alexander
    [J]. INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2008, 19 (03) : 617 - 631
  • [2] Deterministic blow-ups of minimal NFA's
    Jiraskova, Galina
    [J]. RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS, 2006, 40 (03): : 485 - 499
  • [3] Autoequivalences of blow-ups of minimal surfaces
    Hu, Xianyu
    Krah, Johannes
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2024,
  • [4] ON THE FINITE GENERATION OF SYMBOLIC BLOW-UPS
    HUNEKE, C
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1982, 179 (04) : 465 - 472
  • [5] More on deterministic and nondeterministic finite cover automata
    Gruber, Hermann
    Holzer, Markus
    Jakobi, Sebastian
    [J]. THEORETICAL COMPUTER SCIENCE, 2017, 679 : 18 - 30
  • [6] On input-revolving deterministic and nondeterministic finite automata
    Bensch, Suna
    Bordihn, Henning
    Holzer, Markus
    Kutrib, Martin
    [J]. INFORMATION AND COMPUTATION, 2009, 207 (11) : 1140 - 1155
  • [7] Minimal Reversible Deterministic Finite Automata
    Holzer, Markus
    Jakobi, Sebastian
    Kutrib, Martin
    [J]. INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2018, 29 (02) : 251 - 270
  • [8] Minimal Reversible Deterministic Finite Automata
    Holzer, Markus
    Jakobi, Sebastian
    Kutrib, Martin
    [J]. DEVELOPMENTS IN LANGUAGE THEORY (DLT 2015), 2015, 9168 : 276 - 287
  • [9] Algorithmic Formal Proof of Equivalence of Nondeterministic and Deterministic Finite Automata
    Zafar, Nazir Ahmad
    Shah, Syed Hasnain Haider
    [J]. ICECT: 2009 INTERNATIONAL CONFERENCE ON ELECTRONIC COMPUTER TECHNOLOGY, PROCEEDINGS, 2009, : 108 - +
  • [10] Note on the succinctness of deterministic, nondeterministic, probabilistic and quantum finite automata
    Mereghetti, C
    Palano, B
    Pighizzini, G
    [J]. RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS, 2001, 35 (05): : 477 - 490