Minimal Reversible Deterministic Finite Automata

被引:12
|
作者
Holzer, Markus [1 ]
Jakobi, Sebastian [1 ]
Kutrib, Martin [1 ]
机构
[1] Univ Giessen, Inst Informat, Arndtstr 2, D-35392 Giessen, Germany
关键词
Reversible finite automata; structural characterization; decidability; minimality; NL-completeness; descriptional complexity; CONSTRUCTION; SPACE;
D O I
10.1142/S0129054118400063
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study reversible deterministic finite automata (REV-DFAs), that are partial deterministic finite automata whose transition function induces an injective mapping on the state set for every letter of the input alphabet. We give a structural characterization of regular languages that can be accepted by REV-DFAs. This characterization is based on the absence of a forbidden pattern in the (minimal) deterministic state graph. Again with a forbidden pattern approach, we also show that the minimality of REV-DFAs among all equivalent REV-DFAs can be decided. Both forbidden pattern characterizations give rise to NL-complete decision algorithms. In fact, our techniques allow us to construct the minimal REV-DFA for a given minimal DFA. These considerations lead to asymptotic upper and lower bounds on the conversion from DFAs to REV-DFAs. Thus, almost all problems that concern uniqueness and the size of minimal REV-DFAs are solved.
引用
收藏
页码:251 / 270
页数:20
相关论文
共 50 条
  • [1] Minimal Reversible Deterministic Finite Automata
    Holzer, Markus
    Jakobi, Sebastian
    Kutrib, Martin
    [J]. DEVELOPMENTS IN LANGUAGE THEORY (DLT 2015), 2015, 9168 : 276 - 287
  • [2] Exact generation of minimal acyclic deterministic finite automata
    Almeida, Marco
    Moreira, Nelma
    Reis, Rogerio
    [J]. INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2008, 19 (04) : 751 - 765
  • [3] Incremental construction of minimal deterministic finite cover automata
    Campeanu, Cezar
    Paun, Andrei
    Smith, Jason R.
    [J]. THEORETICAL COMPUTER SCIENCE, 2006, 363 (02) : 135 - 148
  • [4] An incremental algorithm for constructing minimal deterministic finite cover automata
    Campeanu, C
    Paun, A
    Smith, JR
    [J]. IMPLEMENTATION AND APPLICATION OF AUTOMATA, 2006, 3845 : 90 - 103
  • [5] Construction of minimal deterministic finite automata from biological motifs
    Marschall, Tobias
    [J]. THEORETICAL COMPUTER SCIENCE, 2011, 412 (8-10) : 922 - 930
  • [6] A fast and simple algorithm for constructing minimal acyclic deterministic finite automata
    Watson, BW
    [J]. JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2002, 8 (02): : 363 - 367
  • [7] The number of similarity relations and the number of minimal deterministic finite cover automata
    Câmpeanu, C
    Paun, A
    [J]. IMPLEMENTATION AND APPLICATION OF AUTOMATA, 2003, 2608 : 67 - 76
  • [8] Conditions for Minimal Fuzzy Deterministic Finite Automata via Brzozowski's Procedure
    Gonzalez de Mendivil, Jose R.
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2018, 26 (04) : 2409 - 2420
  • [9] Query Learning of Minimal Deterministic Symbolic Finite Automata Separating Regular Languages
    Kawasaki, Yoshito
    Hendrian, Diptarama
    Yoshinaka, Ryo
    Shinohara, Ayumi
    [J]. SOFSEM 2024: THEORY AND PRACTICE OF COMPUTER SCIENCE, 2024, 14519 : 340 - 354
  • [10] Failure Deterministic Finite Automata
    Kourie, Derrick G.
    Watson, Bruce W.
    Cleophas, Loek
    Venter, Fritz
    [J]. PROCEEDINGS OF THE PRAGUE STRINGOLOGY CONFERENCE 2012, 2012, : 28 - 41