Predicting the clinical trajectory in critically ill patients with sepsis: a cohort study

被引:11
|
作者
Klein Klouwenberg, Peter M. C. [1 ]
Spitoni, Cristian [2 ]
van der Poll, Tom [3 ]
Bonten, Marc J. [4 ,5 ]
Cremer, Olaf L. [6 ]
Frencken, Jos F. [7 ]
van de Groep, Kirsten [7 ]
Koster-Brouwer, Marlies E. [7 ]
Ong, David S. Y. [7 ]
Verboom, Diana [7 ]
de Beer, Friso M. [8 ]
Bos, Lieuwe D. J. [8 ]
Glas, Gerie J. [8 ]
van Hooijdonk, Roosmarijn T. M. [8 ]
Schouten, Laura R. A. [8 ]
Straat, Marleen [8 ]
Witteveen, Esther [8 ]
Wieske, Luuk [8 ]
Hoogendijk, Arie J. [9 ]
Huson, Mischa A. [9 ]
van Vught, Lonneke A. [9 ]
机构
[1] Rijnstate Hosp, Dept Med Microbiol & Immunol, Wagnerlaan 55, NL-6815 AD Arnhem, Netherlands
[2] Univ Utrecht, Dept Math, Utrecht, Netherlands
[3] Univ Amsterdam, Amsterdam Univ, Locat Acad Med Ctr, Div Infect Dis,Med Ctr,Ctr Expt & Mol Med, Amsterdam, Netherlands
[4] Univ Utrecht, Univ Med Ctr Utrecht, Dept Med Microbiol, Utrecht, Netherlands
[5] Univ Utrecht, Univ Med Ctr Utrecht, Julius Ctr Hlth Sci & Primary Care, Utrecht, Netherlands
[6] Univ Utrecht, Univ Med Ctr Utrecht, Dept Intens Care Med, Utrecht, Netherlands
[7] Univ Med Ctr Utrecht, Dept Intens Care, Utrecht, Netherlands
[8] Acad Med Ctr Amsterdam, Dept Intens Care, Amsterdam, Netherlands
[9] Acad Med Ctr Amsterdam, Ctr Expt & Mol Med, Amsterdam, Netherlands
来源
CRITICAL CARE | 2019年 / 23卷 / 01期
关键词
Intensive care unit; Epidemiology; Outcome; Organ failure; Sepsis; Markov model;
D O I
10.1186/s13054-019-2687-z
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
Background: To develop a mathematical model to estimate daily evolution of disease severity using routinely available parameters in patients admitted to the intensive care unit (ICU). Methods: Over a 3-year period, we prospectively enrolled consecutive adults with sepsis and categorized patients as (1) being at risk for developing (more severe) organ dysfunction, (2) having (potentially still reversible) limited organ failure, or (3) having multiple-organ failure. Daily probabilities for transitions between these disease states, and to death or discharge, during the first 2 weeks in ICU were calculated using a multi-state model that was updated every 2 days using both baseline and time-varying information. The model was validated in independent patients. Results: We studied 1371 sepsis admissions in 1251 patients. Upon presentation, 53 (4%) were classed at risk, 1151 (84%) had limited organ failure, and 167 (12%) had multiple-organ failure. Among patients with limited organ failure, 197 (17%) evolved to multiple-organ failure or died and 809 (70%) improved or were discharged alive within 14 days. Among patients with multiple-organ failure, 67 (40%) died and 91 (54%) improved or were discharged. Treatment response could be predicted with reasonable accuracy (c-statistic ranging from 0.55 to 0.81 for individual disease states, and 0.67 overall). Model performance in the validation cohort was similar. Conclusions: This prediction model that estimates daily evolution of disease severity during sepsis may eventually support clinicians in making better informed treatment decisions and could be used to evaluate prognostic biomarkers or perform in silico modeling of novel sepsis therapies during trial design.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Sepsis in critically ill patients with trauma
    Herasevich, Vitaly
    Afessa, Bekele
    Pickering, Brian W.
    [J]. CRITICAL CARE MEDICINE, 2011, 39 (04) : 876 - 878
  • [32] Clinical sepsis phenotypes in critically ill COVID-19 patients
    Niklas Bruse
    Emma J. Kooistra
    Aron Jansen
    Rombout B. E. van Amstel
    Nicolette F. de Keizer
    Jason N. Kennedy
    Christopher Seymour
    Lonneke A. van Vught
    Peter Pickkers
    Matthijs Kox
    [J]. Critical Care, 26
  • [33] Critically ill patients with cancer and sepsis: Clinical course and prognostic factors
    Rosolem, Maira M.
    Rabello, Ligia S. C. F.
    Lisboa, Thiago
    Caruso, Pedro
    Costa, Ramon T.
    Leal, Juliana V. R.
    Salluh, Jorge I. F.
    Soares, Marcio
    [J]. JOURNAL OF CRITICAL CARE, 2012, 27 (03) : 301 - 307
  • [34] Critically ill patients with cancer and sepsis: clinical course and prognostic factors
    LSCF Rabello
    M Rosalem
    T Lisboa
    P Caruso
    R Costa
    J Leal
    J Salluh
    M Soares
    [J]. Critical Care, 15 (Suppl 2):
  • [35] Clinical sepsis phenotypes in critically ill COVID-19 patients
    Bruse, Niklas
    Kooistra, Emma J.
    Jansen, Aron
    van Amstel, Rombout B. E.
    de Keizer, Nicolette F.
    Kennedy, Jason N.
    Seymour, Christopher
    van Vught, Lonneke A.
    Pickkers, Peter
    Kox, Matthijs
    [J]. CRITICAL CARE, 2022, 26 (01)
  • [36] Clinical Significance of Ischemia Modified Albumin in Critically Ill Patients with Sepsis
    Prashanth A.K.
    Anand U.
    [J]. Indian Journal of Clinical Biochemistry, 2015, 30 (2) : 194 - 197
  • [37] Advanced echocardiographic phenotyping of critically ill patients with coronavirus-19 sepsis: a prospective cohort study
    François Bagate
    Paul Masi
    Thomas d’Humières
    Lara Al-Assaad
    Laure Abou Chakra
    Keyvan Razazi
    Nicolas de Prost
    Guillaume Carteaux
    Genevieve Derumeaux
    Armand Mekontso Dessap
    [J]. Journal of Intensive Care, 9
  • [38] Source-specific host response and outcomes in critically ill patients with sepsis: a prospective cohort study
    Peters-Sengers, Hessel
    Butler, Joe M.
    Uhel, Fabrice
    Schultz, Marcus J.
    Bonten, Marc J.
    Cremer, Olaf L.
    Scicluna, Brendon P.
    van Vught, Lonneke A.
    van der Poll, Tom
    [J]. INTENSIVE CARE MEDICINE, 2022, 48 (01) : 92 - 102
  • [39] Effects of ondansetron exposure during ICU stay on outcomes of critically ill patients with sepsis: a cohort study
    Yang, Boshen
    Niu, Kaifan
    Zhu, Yuankang
    Zheng, Xinjie
    Li, Taixi
    Wang, Zhixiang
    Jin, Xian
    Lu, Xia
    Qiang, Haifeng
    Shen, Chengxing
    [J]. FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2023, 13
  • [40] Source-specific host response and outcomes in critically ill patients with sepsis: a prospective cohort study
    Hessel Peters-Sengers
    Joe M. Butler
    Fabrice Uhel
    Marcus J. Schultz
    Marc J. Bonten
    Olaf L. Cremer
    Brendon P. Scicluna
    Lonneke A. van Vught
    Tom van der Poll
    [J]. Intensive Care Medicine, 2022, 48 : 92 - 102