Predicting the clinical trajectory in critically ill patients with sepsis: a cohort study

被引:11
|
作者
Klein Klouwenberg, Peter M. C. [1 ]
Spitoni, Cristian [2 ]
van der Poll, Tom [3 ]
Bonten, Marc J. [4 ,5 ]
Cremer, Olaf L. [6 ]
Frencken, Jos F. [7 ]
van de Groep, Kirsten [7 ]
Koster-Brouwer, Marlies E. [7 ]
Ong, David S. Y. [7 ]
Verboom, Diana [7 ]
de Beer, Friso M. [8 ]
Bos, Lieuwe D. J. [8 ]
Glas, Gerie J. [8 ]
van Hooijdonk, Roosmarijn T. M. [8 ]
Schouten, Laura R. A. [8 ]
Straat, Marleen [8 ]
Witteveen, Esther [8 ]
Wieske, Luuk [8 ]
Hoogendijk, Arie J. [9 ]
Huson, Mischa A. [9 ]
van Vught, Lonneke A. [9 ]
机构
[1] Rijnstate Hosp, Dept Med Microbiol & Immunol, Wagnerlaan 55, NL-6815 AD Arnhem, Netherlands
[2] Univ Utrecht, Dept Math, Utrecht, Netherlands
[3] Univ Amsterdam, Amsterdam Univ, Locat Acad Med Ctr, Div Infect Dis,Med Ctr,Ctr Expt & Mol Med, Amsterdam, Netherlands
[4] Univ Utrecht, Univ Med Ctr Utrecht, Dept Med Microbiol, Utrecht, Netherlands
[5] Univ Utrecht, Univ Med Ctr Utrecht, Julius Ctr Hlth Sci & Primary Care, Utrecht, Netherlands
[6] Univ Utrecht, Univ Med Ctr Utrecht, Dept Intens Care Med, Utrecht, Netherlands
[7] Univ Med Ctr Utrecht, Dept Intens Care, Utrecht, Netherlands
[8] Acad Med Ctr Amsterdam, Dept Intens Care, Amsterdam, Netherlands
[9] Acad Med Ctr Amsterdam, Ctr Expt & Mol Med, Amsterdam, Netherlands
来源
CRITICAL CARE | 2019年 / 23卷 / 01期
关键词
Intensive care unit; Epidemiology; Outcome; Organ failure; Sepsis; Markov model;
D O I
10.1186/s13054-019-2687-z
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
Background: To develop a mathematical model to estimate daily evolution of disease severity using routinely available parameters in patients admitted to the intensive care unit (ICU). Methods: Over a 3-year period, we prospectively enrolled consecutive adults with sepsis and categorized patients as (1) being at risk for developing (more severe) organ dysfunction, (2) having (potentially still reversible) limited organ failure, or (3) having multiple-organ failure. Daily probabilities for transitions between these disease states, and to death or discharge, during the first 2 weeks in ICU were calculated using a multi-state model that was updated every 2 days using both baseline and time-varying information. The model was validated in independent patients. Results: We studied 1371 sepsis admissions in 1251 patients. Upon presentation, 53 (4%) were classed at risk, 1151 (84%) had limited organ failure, and 167 (12%) had multiple-organ failure. Among patients with limited organ failure, 197 (17%) evolved to multiple-organ failure or died and 809 (70%) improved or were discharged alive within 14 days. Among patients with multiple-organ failure, 67 (40%) died and 91 (54%) improved or were discharged. Treatment response could be predicted with reasonable accuracy (c-statistic ranging from 0.55 to 0.81 for individual disease states, and 0.67 overall). Model performance in the validation cohort was similar. Conclusions: This prediction model that estimates daily evolution of disease severity during sepsis may eventually support clinicians in making better informed treatment decisions and could be used to evaluate prognostic biomarkers or perform in silico modeling of novel sepsis therapies during trial design.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Predicting the clinical trajectory in critically ill patients with sepsis: a cohort study
    Peter M. C. Klein Klouwenberg
    Cristian Spitoni
    Tom van der Poll
    Marc J. Bonten
    Olaf L. Cremer
    [J]. Critical Care, 23
  • [2] Correction to: Predicting the clinical trajectory in critically ill patients with sepsis: a cohort study
    Peter M. C. Klein Klouwenberg
    Cristian Spitoni
    Tom van der Poll
    Marc J. Bonten
    Olaf L. Cremer
    [J]. Critical Care, 24
  • [3] Predicting the clinical trajectory in critically ill patients with sepsis: a cohort study (vol 23, 408, 2019)
    Klouwenberg, Peter M. C. Klein
    Spitoni, Cristian
    van der Poll, Tom
    Bonten, Marc J.
    Cremer, Olaf L.
    [J]. CRITICAL CARE, 2020, 24 (01):
  • [4] Etiology of Myocardial Injury in Critically Ill Patients with Sepsis A Cohort Study
    Frencken, Jos F.
    van Smeden, Maarten
    van de Groep, Kirsten
    Ong, David S. Y.
    Klouwenberg, Peter M. C. Klein
    Juffermans, Nicole
    Bonten, Marc J. M.
    van der Poll, Tom
    Cremer, Olaf L.
    [J]. ANNALS OF THE AMERICAN THORACIC SOCIETY, 2022, 19 (05) : 773 - 780
  • [5] Buffering Capacity in Sepsis: A Prospective Cohort Study in Critically Ill Patients
    Vasileiadis, Ioannis
    Kompoti, Maria
    Rovina, Nikoletta
    Tripodaki, Elli-Sophia
    Filis, Christos
    Alevrakis, Emmanouil
    Kyriakoudi, Anna
    Kyriakopoulou, Magdalini
    Koulouris, Nikolaos
    Koutsoukou, Antonia
    [J]. JOURNAL OF CLINICAL MEDICINE, 2019, 8 (11)
  • [6] PREDICTING AMINOGLYCOSIDE DOSAGE IN CRITICALLY ILL PATIENTS WITH SEPSIS
    STEVENS, MR
    [J]. CLINICAL PHARMACY, 1987, 6 (04): : 272 - 273
  • [7] Clinical Sepsis Phenotypes in Critically Ill Patients
    Papathanakos, Georgios
    Andrianopoulos, Ioannis
    Xenikakis, Menelaos
    Papathanasiou, Athanasios
    Koulenti, Despoina
    Blot, Stijn
    Koulouras, Vasilios
    [J]. MICROORGANISMS, 2023, 11 (09)
  • [8] Determinants of Deescalation Failure in Critically Ill Patients with Sepsis: A Prospective Cohort Study
    Salahuddin, Nawal
    Amer, Lama
    Joseph, Mini
    El Hazmi, Alya
    Hawa, Hassan
    Maghrabi, Khalid
    [J]. CRITICAL CARE RESEARCH AND PRACTICE, 2016, 2016
  • [9] Immature platelet fraction in predicting sepsis in critically ill patients
    De Blasi, Roberto Alberto
    Cardelli, Patrizia
    Costante, Alessandro
    Sandri, Micol
    Mercieri, Marco
    Arcioni, Roberto
    [J]. INTENSIVE CARE MEDICINE, 2013, 39 (04) : 636 - 643
  • [10] Immature platelet fraction in predicting sepsis in critically ill patients
    Roberto Alberto De Blasi
    Patrizia Cardelli
    Alessandro Costante
    Micol Sandri
    Marco Mercieri
    Roberto Arcioni
    [J]. Intensive Care Medicine, 2013, 39 : 636 - 643