Image Retrieval Using Discriminant Embedding and LS-SVM

被引:0
|
作者
Wang, Ziqiang [1 ]
Sun, Xia [1 ]
机构
[1] Henan Univ Technol, Sch Informat Sci & Engn, Zhengzhou 450001, Peoples R China
关键词
Image retrieval; local discriminant embedding; least square SVM(LS-SVM); dimensionality reduction;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To efficiently deal with the curse of dimensionality in the content-based image retrieval(CBIR) system, a novel image retrieval algorithm is proposed by combination of local discriminant embedding(LDE) and least square SVM(LS-SVM) in this paper. LDE aims to achieve good discriminating performance by integrating the local geometrical structure and class relations between image data. LS-SVM classifier is used to classify the retrieved image into relevant or irrelevant image based on extracted low-level visual features. Experimental results on real-world image collection demonstrate that the proposed algorithm performs much better than other related image retrieval algorithms.
引用
收藏
页码:324 / 328
页数:5
相关论文
共 50 条
  • [21] Fault diagnosis for ESP sensors using LS-SVM
    Wu, JY
    Tang, HJ
    Li, SY
    Zheng, SB
    [J]. DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2006, 13 : 2062 - 2069
  • [22] Identification of a Surface Marine Vessel Using LS-SVM
    Moreno-Salinas, David
    Chaos, Dictino
    Manuel de la Cruz, Jesus
    Aranda, Joaquin
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [23] Classification of mammographic image abnormalities based on emo and LS-SVM techniques
    Vimalkumar, M. N.
    Helenprabha, K.
    Surendar, A.
    [J]. RESEARCH JOURNAL OF BIOTECHNOLOGY, 2017, 12 (01): : 35 - 40
  • [24] Image Inpainting with LS-SVM Based on Additive High Order Kernel
    Qi Kaijie
    Ji Ruirui
    Yang Yanxi
    Zhang Fan
    [J]. 2017 2ND INTERNATIONAL CONFERENCE ON IMAGE, VISION AND COMPUTING (ICIVC 2017), 2017, : 406 - 409
  • [25] Generalization of Parameter Selection of SVM and LS-SVM for Regression
    Zeng, Jiye
    Tan, Zheng-Hong
    Matsunaga, Tsuneo
    Shirai, Tomoko
    [J]. MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2019, 1 (02): : 745 - 755
  • [26] Implementation of LS-SVM with HLS on Zynq
    Ma Ning
    Wang Shaojun
    Pang Yeyong
    Peng Yu
    [J]. PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON FIELD-PROGRAMMABLE TECHNOLOGY (FPT), 2014, : 346 - 349
  • [27] Incremental Modelling of Automotive Engine Performance using LS-SVM
    Vong, C. M.
    Wong, P. K.
    Zhang, R.
    [J]. ICIA: 2009 INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION, VOLS 1-3, 2009, : 1512 - +
  • [28] Airplane's hard landing diagnosis using LS-SVM
    Xu, Gui-Mei
    Huang, Sheng-Guo
    [J]. Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice, 2010, 30 (04): : 763 - 768
  • [29] LS-SVM Based Soft Sensoring
    Peng, Zhenrui
    Yang, Xijuan
    Qi, Wenzhe
    [J]. 2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, 2008, : 4320 - +
  • [30] Forecasting Models for Hydropower Unit Stability Using LS-SVM
    Qiao, Liangliang
    Chen, Qijuan
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015