LARGE EDDY SIMULATION OF A PREMIXED BUNSEN FLAME USING A MODIFIED THICKENED-FLAME MODEL AT TWO REYNOLDS NUMBER

被引:21
|
作者
De, Ashoke [1 ]
Acharya, Sumanta [1 ,2 ]
机构
[1] Louisiana State Univ, Dept Mech Engn, Baton Rouge, LA 70803 USA
[2] Louisiana State Univ, Turbine Innovat & Energy Res Ctr, Baton Rouge, LA 70803 USA
关键词
Flame-wrinkling; Large eddy simulation; Thickened flame; Turbulence; TURBULENT COMBUSTION; WRINKLING MODEL; FLOW; LES;
D O I
10.1080/00102200903076266
中图分类号
O414.1 [热力学];
学科分类号
摘要
A modified thickened flame (TF) model based on large eddy simulation (LES) methodology is used to investigate premixed combustion, and the model predictions are evaluated by comparing with the piloted premixed stoichiometric methane-air flame data for Reynolds numbers Re 24,000 (flame F3) and Re 52,000 (flame F1). The basic idea of the TF approach is that the flame front is artificially thickened to resolve on the computational LES grid while keeping the laminar flame speed (s(L)(0)) constant. The artificially thickening of the flame front is obtained by enhancing the molecular diffusion and decreasing the pre-exponential factor of the Arrhenius law. Because the flame front is artificially thickened, the response of the thickened flame to turbulence is affected and taken care of by incorporating an efficiency function (E) in the governing equations. The efficiency function (E) in the modified TF model is proposed based on the direct numerical simulations (DNS) data set of flame-vortex interactions. The predicted simulation results are compared with the experimental data and with computations reported using a Reynolds averaged Navier-Stokes (RANS)-based probability distribution function (PDF) modeling approach and RANS-based G-equation approach. It is shown that the results with the modified TF model are generally in good agreement with the data, with the TF predictions consistently comparable to the PDF model predictions and superior to the results with the G-equation approach.
引用
收藏
页码:1231 / 1272
页数:42
相关论文
共 50 条
  • [21] Large Eddy Simulation of Premixed Turbulent Combustion using Ξ flame surface wrinkling model
    Tabor, G
    Weller, HG
    FLOW TURBULENCE AND COMBUSTION, 2004, 72 (01) : 1 - 28
  • [22] Large Eddy Simulation of Premixed Turbulent Combustion Using Ξ Flame Surface Wrinkling Model
    G. Tabor
    H.G. Weller
    Flow, Turbulence and Combustion, 2004, 72 : 1 - 27
  • [23] Large Eddy Simulation of a Propagating Turbulent Premixed Flame
    M.P. Kirkpatrick
    S.W. Armfield
    A.R. Masri
    S.S. Ibrahim
    Flow, Turbulence and Combustion, 2003, 70 : 1 - 19
  • [24] Large eddy simulation of the acoustic of a premixed swirl flame
    Carpes, C. Q.
    De Bortoli, A. L.
    COMPUTERS & FLUIDS, 2019, 182 : 1 - 8
  • [25] Large eddy simulation of a propagating turbulent premixed flame
    Kirkpatrick, MP
    Armfield, SW
    Masri, AR
    Ibrahim, SS
    FLOW TURBULENCE AND COMBUSTION, 2003, 70 (1-4) : 1 - 19
  • [26] Three-dimensional full compressible large-eddy simulation of non-premixed combustion using dynamically thickened flame model
    Shang, Ming-Tao
    Zhang, Wen-Pu
    Zhang, Ke
    Fan, Jian-Ren
    Ranshao Kexue Yu Jishu/Journal of Combustion Science and Technology, 2010, 16 (06): : 496 - 502
  • [27] Large Eddy Simulation of Methane Non-premixed Flame Using the Laminar Flamelet Model
    Mari Mitani
    Yuta Ito
    Nobuhiko Yamasaki
    JournalofThermalScience, 2011, 20 (06) : 534 - 542
  • [28] Large eddy simulation of methane non-premixed flame using the laminar flamelet model
    Mari Mitani
    Yuta Ito
    Nobuhiko Yamasaki
    Journal of Thermal Science, 2011, 20 : 534 - 542
  • [29] Large Eddy Simulation of a Turbulent Spray Burner Using Thickened Flame Model and Adaptive Mesh Refinement
    Rezchikova, Aleksandra
    Mehl, Cedric
    Drennan, Scott
    Colin, Olivier
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2021, 143 (04):
  • [30] Large Eddy Simulation of Lean Premixed Swirling Flames via Dynamically Thickened Flame Model Coupling with the REDIM Chemistry Table
    H.-K. He
    P. Wang
    L. Xu
    Q. Xu
    L.-S. Jiang
    P. Shrotriya
    Combustion, Explosion, and Shock Waves, 2020, 56 : 634 - 647