Sparse Representations in Audio and Music: From Coding to Source Separation

被引:127
|
作者
Plumbley, Mark D. [1 ]
Blumensath, Thomas [2 ]
Daudet, Laurent [3 ,5 ]
Gribonval, Remi [4 ]
Davies, Mike E. [6 ,7 ]
机构
[1] Queen Mary Univ London, Sch Elect Engn & Comp Sci, London E1 4NS, England
[2] Univ Southampton, Sch Math, Southampton SO17 1BJ, Hants, England
[3] Univ Paris 06, Inst Jean Le Rond Alembert, LAM, F-75015 Paris, France
[4] INRIA, Ctr Inria Rennes Bretagne Atlantique, F-35042 Rennes, France
[5] Univ Denis Diderot Paris 7, Langevin Inst Waves & Images LOA, Paris, France
[6] Univ Edinburgh, Inst Digital Commun IDCOM, Sch Engn & Elect, Edinburgh EH9 3JL, Midlothian, Scotland
[7] Univ Edinburgh, Joint Res Inst Signal & Image Proc, Sch Engn & Elect, Edinburgh EH9 3JL, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Audio coding; basis functions; discrete cosine transforms; Fourier transforms; music; signal representations; wavelet transforms; BLIND SOURCE SEPARATION; SIGNAL RECOVERY; ALGORITHMS;
D O I
10.1109/JPROC.2009.2030345
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Sparse representations have proved a powerful tool in the analysis and processing of audio signals and already lie at the heart of popular coding standards such as MP3 and Dolby AAC. In this paper we give an overview of a number of current and emerging applications of sparse representations in areas from audio coding, audio enhancement and music transcription to blind source separation solutions that can solve the "cocktail party problem." In each case we will show how the prior assumption that the audio signals are approximately sparse in some time-frequency representation allows us to address the associated signal processing task.
引用
收藏
页码:995 / 1005
页数:11
相关论文
共 50 条
  • [21] On the Importance of Audio-source Separation for Singer Identification in Polyphonic Music
    Sharma, Bidisha
    Das, Rohan Kumar
    Li, Haizhou
    INTERSPEECH 2019, 2019, : 2020 - 2024
  • [22] Audio source separation
    Davies, M
    MATHEMATICS IN SIGNAL PROCESSING V, 2002, (71): : 57 - 68
  • [23] A COMPRESSED SENSING APPROACH FOR UNDERDETERMINED BLIND AUDIO SOURCE SEPARATION WITH SPARSE REPRESENTATION
    Xu, Tao
    Wang, Wenwu
    2009 IEEE/SP 15TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING, VOLS 1 AND 2, 2009, : 493 - 496
  • [24] Reverberant Audio Source Separation via Sparse and Low-Rank Modeling
    Arberet, Simon
    Vandergheynst, Pierre
    IEEE SIGNAL PROCESSING LETTERS, 2014, 21 (04) : 404 - 408
  • [25] Identification of Sparse Audio Tampering Using Distributed Source Coding and Compressive Sensing Techniques
    Valenzise, G.
    Prandi, G.
    Tagliasacchi, M.
    Sarti, A.
    EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2009,
  • [26] Identification of Sparse Audio Tampering Using Distributed Source Coding and Compressive Sensing Techniques
    G Valenzise
    G Prandi
    M Tagliasacchi
    A Sarti
    EURASIP Journal on Image and Video Processing, 2009
  • [27] Learning Sparse Representations in Reinforcement Learning with Sparse Coding
    Le, Lei
    Kumaraswamy, Raksha
    White, Martha
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 2067 - 2073
  • [28] Musical audio analysis using sparse representations
    Plumbley, Mark D.
    Abdallah, Samer A.
    Blumensath, Thomas
    Jafari, Maria G.
    Nesbit, Andrew
    Vincent, Emmanuel
    Wang, Beiming
    COMPSTAT 2006: PROCEEDINGS IN COMPUTATIONAL STATISTICS, 2006, : 105 - +
  • [29] AUDIO SIGNAL REPRESENTATIONS FOR FACTORIZATION IN THE SPARSE DOMAIN
    Moussallam, Manuel
    Daudet, Laurent
    Richard, Gael
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 513 - 516
  • [30] Visually Guided Sound Source Separation With Audio-Visual Predictive Coding
    Song, Zengjie
    Zhang, Zhaoxiang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 15528 - 15542