Sparse Representations in Audio and Music: From Coding to Source Separation

被引:127
|
作者
Plumbley, Mark D. [1 ]
Blumensath, Thomas [2 ]
Daudet, Laurent [3 ,5 ]
Gribonval, Remi [4 ]
Davies, Mike E. [6 ,7 ]
机构
[1] Queen Mary Univ London, Sch Elect Engn & Comp Sci, London E1 4NS, England
[2] Univ Southampton, Sch Math, Southampton SO17 1BJ, Hants, England
[3] Univ Paris 06, Inst Jean Le Rond Alembert, LAM, F-75015 Paris, France
[4] INRIA, Ctr Inria Rennes Bretagne Atlantique, F-35042 Rennes, France
[5] Univ Denis Diderot Paris 7, Langevin Inst Waves & Images LOA, Paris, France
[6] Univ Edinburgh, Inst Digital Commun IDCOM, Sch Engn & Elect, Edinburgh EH9 3JL, Midlothian, Scotland
[7] Univ Edinburgh, Joint Res Inst Signal & Image Proc, Sch Engn & Elect, Edinburgh EH9 3JL, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Audio coding; basis functions; discrete cosine transforms; Fourier transforms; music; signal representations; wavelet transforms; BLIND SOURCE SEPARATION; SIGNAL RECOVERY; ALGORITHMS;
D O I
10.1109/JPROC.2009.2030345
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Sparse representations have proved a powerful tool in the analysis and processing of audio signals and already lie at the heart of popular coding standards such as MP3 and Dolby AAC. In this paper we give an overview of a number of current and emerging applications of sparse representations in areas from audio coding, audio enhancement and music transcription to blind source separation solutions that can solve the "cocktail party problem." In each case we will show how the prior assumption that the audio signals are approximately sparse in some time-frequency representation allows us to address the associated signal processing task.
引用
收藏
页码:995 / 1005
页数:11
相关论文
共 50 条
  • [1] Sparse coding for convolutive blind audio source separation
    Jafari, MG
    Abdallah, SA
    Plumbley, MD
    Davies, ME
    INDEPENDENT COMPONENT ANALYSIS AND BLIND SIGNAL SEPARATION, PROCEEDINGS, 2006, 3889 : 132 - 139
  • [2] Monaural Music Source Separation Using Convolutional Sparse Coding
    Jao, Ping-Keng
    Su, Li
    Yang, Yi-Hsuan
    Wohlberg, Brendt
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2016, 24 (11) : 2158 - 2170
  • [3] INFORMED MONAURAL SOURCE SEPARATION OF MUSIC BASED ON CONVOLUTIONAL SPARSE CODING
    Jao, Ping-Keng
    Yang, Yi-Hsuan
    Wohlberg, Brendt
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 236 - 240
  • [4] Predominant audio source separation in polyphonic music
    Reghunath, Lekshmi Chandrika
    Rajan, Rajeev
    EURASIP JOURNAL ON AUDIO SPEECH AND MUSIC PROCESSING, 2023, 2023 (01)
  • [5] Predominant audio source separation in polyphonic music
    Lekshmi Chandrika Reghunath
    Rajeev Rajan
    EURASIP Journal on Audio, Speech, and Music Processing, 2023
  • [6] Automatic music transcription and audio source separation
    Plumbley, MD
    Abdallah, SA
    Bello, JP
    Davies, ME
    Monti, G
    Sandler, MB
    CYBERNETICS AND SYSTEMS, 2002, 33 (06) : 603 - 627
  • [7] Underdetermined blind source separation using sparse representations
    Bofill, P
    Zibulevsky, M
    SIGNAL PROCESSING, 2001, 81 (11) : 2353 - 2362
  • [8] Blind audiovisual source separation using sparse representations
    Casanovas, Anna Llagostera
    Monaci, Gianluca
    Vandergheynst, Pierre
    2007 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-7, 2007, : 1429 - 1432
  • [9] Sparse Reverberant Audio Source Separation via Reweighted Analysis
    Arberet, Simon
    Vandergheynst, Pierre
    Carrillo, Rafael E.
    Thiran, Jean-Philippe
    Wiaux, Yves
    IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2013, 21 (07): : 1391 - 1402
  • [10] Sparse coding blind source separation through Powerline
    Szu, H
    Chanyagorn, P
    Kopriva, I
    NEUROCOMPUTING, 2002, 48 : 1015 - 1020