On Algebras Generated by a Partial Isometry

被引:0
|
作者
Shi, Luoyi [1 ]
Zhu, Sen [2 ]
机构
[1] Tianjin Polytech Univ, Dept Math, Tianjin 300387, Peoples R China
[2] Jilin Univ, Dept Math, Changchun 130012, Jilin, Peoples R China
关键词
Partial isometries; C*-algebras; Banach algebras; Amenability; Exactness;
D O I
10.1007/s11785-019-00932-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we describe when a partial isometry generates an amenable C*-algebra or an amenable Banach algebra.
引用
收藏
页码:3825 / 3835
页数:11
相关论文
共 50 条
  • [31] Some Characterizations of Partial Isometry Elements in Rings with Involutions
    Qu, Yinchun
    Yao, Hua
    Wei, Junchao
    FILOMAT, 2019, 33 (19) : 6395 - 6399
  • [32] Power partial isometry index and ascent of a finite matrix
    Gau, Hwa-Long
    Wu, Pei Yuan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 459 : 136 - 144
  • [33] On EP matrices, partial isometry matrices and their numerical range
    Aghamollaei, Gholamreza
    Mortezaei, Mahdiyeh
    Nourollahi, Mohammad Ali
    QUAESTIONES MATHEMATICAE, 2024, 47 (03) : 537 - 550
  • [34] Design of digital learning controllers using a partial isometry
    Jang, HS
    Longman, RW
    SPACEFLIGHT MECHANICS 1996, PTS 1 AND 2, 1996, 93 : 137 - 152
  • [35] An encoding of partial algebras as total algebras
    Diaconescu, Razvan
    INFORMATION PROCESSING LETTERS, 2009, 109 (23-24) : 1245 - 1251
  • [37] One-parameter isometry groups and inclusions between operator algebras
    Daws, Matthew
    NEW YORK JOURNAL OF MATHEMATICS, 2021, 27 : 164 - 204
  • [38] Quantum isometry groups of noncommutative manifolds associated to group C*-algebras
    Bhowmick, Jyotishman
    Skalski, Adam
    JOURNAL OF GEOMETRY AND PHYSICS, 2010, 60 (10) : 1474 - 1489
  • [39] QUASI-NORMAL AND QUASI-ISOMETRY WCT OPERATORS AND THEIR ALGEBRAS
    Huang, Zhidong
    Estaremi, Yousef
    Shamsigamchi, Saeedeh
    OPERATORS AND MATRICES, 2024, 18 (03):
  • [40] Partial representations and partial group algebras
    Dokuchaev, R
    Exel, R
    Piccione, P
    JOURNAL OF ALGEBRA, 2000, 226 (01) : 505 - 532