Federated Learning for Enablement of Digital Twin

被引:4
|
作者
Patwardhan, Amit [1 ]
Thaduri, Adithya [1 ]
Karim, Ramin [1 ]
Castano, Miguel [1 ]
机构
[1] Lulea Univ Technol, Div Operat & Maintenance Engn, Lulea, Sweden
来源
IFAC PAPERSONLINE | 2022年 / 55卷 / 02期
关键词
Digital twin; federated learning; LiDAR; point cloud; railway catenary; LIDAR;
D O I
10.1016/j.ifacol.2022.04.179
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Creation, maintenance, and update of digital twins are costly and time-consuming mechanisms. The required effort can be optimized with the use of LiDAR technologies, which support the process of collecting data related to spatial information such as location, geometry, and position. Sharing such data in multi-stakeholder environments is hindered due to competition, confidentiality, and security requirements. Multi-stakeholder environments favor the use of decentralized creation and update mechanisms with reduced data exchange. Such mechanisms are facilitated by Federated Learning, where the learning process is performed at the data owner's location. Two case studies are presented in this paper, where LiDAR is used to extract information from industrial equipment as a part of the creation of a digital twin.
引用
收藏
页码:114 / 119
页数:6
相关论文
共 50 条
  • [1] Intelligent digital twin for federated learning in AIoT networks
    Rizwan, Atif
    Ahmad, Rashid
    Khan, Anam Nawaz
    Xu, Rongxu
    Kim, Do Hyeun
    INTERNET OF THINGS, 2023, 22
  • [2] Adaptive Federated Learning and Digital Twin for Industrial Internet of Things
    Sun, Wen
    Lei, Shiyu
    Wang, Lu
    Liu, Zhiqiang
    Zhang, Yan
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (08) : 5605 - 5614
  • [3] Digital Twin and Federated Learning: Enhancing and Securing Critical Infrastructure
    De Carlo, Niccolo
    Romano, Ciro
    Granero, Gianluca
    D'Amico, Fabrizio
    Cappelli, Enrico
    Fabbri, Gianluca
    GEOMEDIA, 2024, 28 (03) : 6 - 11
  • [4] Blockchain and Federated Learning Empowered Digital Twin for Effective Healthcare
    Joo, Yunsang
    Camacho, David
    Boi, Biagio
    Esposito, Christian
    Choi, Chang
    HUMAN-CENTRIC COMPUTING AND INFORMATION SCIENCES, 2024, 14
  • [5] MetaAnalyser-A Concept and Toolkit for Enablement of Digital Twin
    Kumari, Jaya
    Karim, Ramin
    Karim, Kevin
    Arenbro, Martin
    IFAC PAPERSONLINE, 2022, 55 (02): : 199 - 204
  • [6] Management of Digital Twin-Driven IoT Using Federated Learning
    Abdulrahman, Sawsan
    Otoum, Safa
    Bouachir, Ouns
    Mourad, Azzam
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2023, 41 (10) : 3636 - 3649
  • [7] Adaptive Federated Learning for Digital Twin Driven Industrial Internet of Things
    Song, Qiang
    Lei, Shiyu
    Sun, Wen
    Zhang, Yan
    2021 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2021,
  • [8] Detection DDoS of Attacks Based on Federated Learning with Digital Twin Network
    Su, Dingling
    Qu, Zehui
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, KSEM 2022, PT III, 2022, 13370 : 153 - 164
  • [9] Blockchain-Enabled Secure Federated Learning for Digital Twin Networks
    Cai, Lingyi
    Hu, Qiwei
    Jiang, Tao
    Niyato, Dusit
    IEEE WIRELESS COMMUNICATIONS, 2024,
  • [10] Management of Digital Twin-Driven IoT Using Federated Learning
    Abdulrahman, Sawsan
    Otoum, Safa
    Bouachir, Ouns
    Mourad, Azzam
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2023, 41 (11) : 3636 - 3649