The D/H and O-18/O-16 ratios of water in the active crater lake situated on the Kusatsu-Shirane volcano, Japan are about 20 and 6 parts per thousand, respectively, higher than local meteoric water. The ratios show seasonal variations superimposed on a gradual change over nine years. The isotopic ratios started to increase in early 1990 and decrease in the spring of 1995. The seasonal variation which is high in winter and low in summer correlates with the temperature difference between lake water and ambient air. The large temperature difference in winter enhances the evaporation of lake water and produces the enriched isotopic ratios relative to the ratios in summer. The accumulation of snow and the decrease in the flux of meteoric water into the lake strengthens the wintertime isotopic enrichment. The enriched isotopic ratios of the lake water over a long time result from the addition of an end member with heavy isotopic ratios contained in a thermal fluid supplied to the lake. Considering the water balance in the lake, the isotopic ratios of the thermal fluid were found to be close to the lake water itself, suggesting the circulation of the lake water seeping through lake floor. Based on the correlation between Cl(-)concentration and the isotopic ratios, the contribution by the heavy end member was estimated to be 25-36% relative to the enrichment by evaporation. The heavy end member could be a liquid phase evolved from a parental fluid, which is a mixture of local meteoric water and a magmatic fluid as found in high-temperature volcanic gases. (C) 2000 Elsevier Science Ltd. All rights reserved.