Automated seizure activity tracking and onset zone localization from scalp EEG using deep neural networks

被引:9
|
作者
Craley, Jeff [1 ]
Jouny, Christophe [2 ]
Johnson, Emily [2 ]
Hsu, David [3 ]
Ahmed, Raheel [4 ]
Venkataraman, Archana [1 ]
机构
[1] Johns Hopkins Univ, Dept Elect & Comp Engn, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Sch Med, Baltimore, MD USA
[3] Univ Wisconsin, Dept Neurol, Madison, WI 53706 USA
[4] Univ Wisconsin, Dept Neurosurg, Madison, WI USA
来源
PLOS ONE | 2022年 / 17卷 / 02期
基金
美国国家科学基金会;
关键词
ALGORITHM; ACCURACY; EPILEPSY;
D O I
10.1371/journal.pone.0264537
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a novel neural network architecture, SZTrack, to detect and track the spatio-temporal propagation of seizure activity in multichannel EEG. SZTrack combines a convolutional neural network encoder operating on individual EEG channels with recurrent neural networks to capture the evolution of seizure activity. Our unique training strategy aggregates individual electrode level predictions for patient-level seizure detection and localization. We evaluate SZTrack on a clinical EEG dataset of 201 seizure recordings from 34 epilepsy patients acquired at the Johns Hopkins Hospital. Our network achieves similar seizure detection performance to state-of-the-art methods and provides valuable localization information that has not previously been demonstrated in the literature. We also show the cross-site generalization capabilities of SZTrack on a dataset of 53 seizure recordings from 14 epilepsy patients acquired at the University of Wisconsin Madison. SZTrack is able to determine the lobe and hemisphere of origin in nearly all of these new patients without retraining the network. To our knowledge, SZTrack is the first end-to-end seizure tracking network using scalp EEG.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Automated Localization of the Seizure Focus using Interictal Intracranial EEG
    Jin, Jing
    Dauwels, Justin
    Cash, Sydney
    2014 36TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2014, : 4439 - 4442
  • [22] Efficient graph convolutional networks for seizure prediction using scalp EEG
    Jia, Manhua
    Liu, Wenjian
    Duan, Junwei
    Chen, Long
    Chen, C. L. Philip
    Wang, Qun
    Zhou, Zhiguo
    FRONTIERS IN NEUROSCIENCE, 2022, 16
  • [23] Pre-surgical iEEG seizure onset zone localization using deep-learning
    Nejedly, P.
    Cimbalnik, J.
    Pijackova, K.
    Hrtonova, V.
    Jurak, P.
    Pail, M.
    Klimes, P.
    Brazdil, M.
    EPILEPSIA, 2023, 64 : 82 - 83
  • [24] Automated Seizure Detection from Multichannel EEG Signals using Support vector Machine and Artificial neural Networks
    Asha, S. A.
    Sudalaimani, C.
    Devanand, P.
    Thomas, Elizabeth T.
    Sudhamony, S.
    2013 IEEE INTERNATIONAL MULTI CONFERENCE ON AUTOMATION, COMPUTING, COMMUNICATION, CONTROL AND COMPRESSED SENSING (IMAC4S), 2013, : 558 - 563
  • [25] Seizure Onset Zone Localization from Ictal High-Density EEG in Refractory Focal Epilepsy
    Willeke Staljanssens
    Gregor Strobbe
    Roel Van Holen
    Gwénaël Birot
    Markus Gschwind
    Margitta Seeck
    Stefaan Vandenberghe
    Serge Vulliémoz
    Pieter van Mierlo
    Brain Topography, 2017, 30 : 257 - 271
  • [26] Seizure Onset Zone Localization from Ictal High-Density EEG in Refractory Focal Epilepsy
    Staljanssens, Willeke
    Strobbe, Gregor
    Van Holen, Roel
    Birot, Gwenael
    Gschwind, Markus
    Seeck, Margitta
    Vandenberghe, Stefaan
    Vulliemoz, serge
    van Mierlo, Pieter
    BRAIN TOPOGRAPHY, 2017, 30 (02) : 257 - 271
  • [27] Multiresolution approach for artifacts removal and localization of seizure onset zone in epileptic EEG signal
    Yedurkar, Dhanalekshmi P.
    Metkar, Shilpa P.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2020, 57
  • [28] Lateralizing Seizure Onset Zone through Interictal Sleep Scalp EEG High-Frequency Oscillations
    Achar, Dhruva P.
    Kotegar, Karunakar A.
    Radhakrishnan, Kurupath
    2024 21ST INTERNATIONAL JOINT CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING, JCSSE 2024, 2024, : 448 - 454
  • [29] Detection and Severity Identification of Neonatal Seizure Using Deep Convolutional Neural Networks from Multichannel EEG Signal
    Debelo, Biniam Seifu
    Thamineni, Bheema Lingaiah
    Dasari, Hanumesh Kumar
    Dawud, Ahmed Ali
    PEDIATRIC HEALTH MEDICINE AND THERAPEUTICS, 2023, 14 : 405 - 417
  • [30] Decision Support System for Seizure Onset Zone Localization Based on Channel Ranking and High-Frequency EEG Activity
    Sumsky, Stefan L.
    Santaniello, Sabato
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2019, 23 (04) : 1535 - 1545