On the Existence and Stability of an Infinite-Dimensional Invariant Torus

被引:0
|
作者
Glyzin, S. D. [1 ]
Kolesov, A. Yu. [1 ]
Rozov, N. Kh. [2 ]
机构
[1] Demidov Yaroslavl State Univ, Yaroslavl 150003, Russia
[2] Lomonosov Moscow State Univ, Moscow 119991, Russia
基金
俄罗斯基础研究基金会;
关键词
mapping; annulus principle; infinite-dimensional invariant torus; stability; smoothness;
D O I
10.1134/S0001434621030226
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider an annular set of the form K = B x T-infinity, where B is a closed ball of the Banach space E, T-infinity is the infinite-dimensional torus (the direct product of a countable number of circles with the topology of coordinatewise uniform convergence). For a certain class of smooth maps Pi: K -> K, we establish sufficient conditions for the existence and stability of an invariant toroidal manifold of the form A = {(v,phi) epsilon K : v = h(phi) epsilon E, phi epsilon T-infinity}, where h(phi) is a continuous function of the argument phi epsilon T-infinity. We also study the question of the Cm-smoothness of this manifold for any natural m.
引用
收藏
页码:534 / 550
页数:17
相关论文
共 50 条