A note on nearly Platonic graphs with connectivity one

被引:1
|
作者
Froncek, Dalibor [1 ]
Khorsandi, Mahdi Reza [2 ]
Musawi, Seyed Reza [2 ]
Qiu, Jiangyi [3 ]
机构
[1] Univ Minnesota, Dept Math & Stat, Duluth, MN 55812 USA
[2] Shahrood Univ Technol, Fac Math Sci, POB 36199-95161, Shahrood, Iran
[3] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
关键词
planar graph; regular graph; Platonic graph;
D O I
10.5614/ejgta.2021.9.1.17
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A k-regular planar graph G is nearly Platonic when all faces but one are of the same degree while the remaining face is of a different degree. We show that no such graphs with connectivity one can exist. This complements a recent result by Keith, Froncek, and Kreher on non-existence of 2-connected nearly Platonic graphs.
引用
收藏
页码:195 / 205
页数:11
相关论文
共 50 条
  • [31] Crossing Numbers of Nearly Complete Graphs and Nearly Complete Bipartite Graphs
    Chia, Gek L.
    Lee, Chan L.
    [J]. ARS COMBINATORIA, 2015, 121 : 437 - 446
  • [32] Note on the Rainbow k-Connectivity of Regular Complete Bipartite Graphs
    Li, Xueliang
    Sun, Yuefang
    [J]. ARS COMBINATORIA, 2011, 101 : 513 - 518
  • [33] All of Graphs of the Platonic Solids are Graceful
    戴宏图
    盛富根
    [J]. 应用数学, 1994, (03) : 368 - 369
  • [34] The maximum atom-bond connectivity index for graphs with edge-connectivity one
    Cui, Qing
    Qian, Qiuping
    Zhong, Lingping
    [J]. DISCRETE APPLIED MATHEMATICS, 2017, 220 : 170 - 173
  • [35] A note on class one graphs with maximum degree six
    Li, Xuechao
    Luo, Rong
    Niu, Jianbing
    [J]. DISCRETE MATHEMATICS, 2006, 306 (13) : 1450 - 1455
  • [36] Zero-One Laws for Connectivity in Random Key Graphs
    Yagan, Osman
    Makowski, Armand M.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (05) : 2983 - 2999
  • [37] Connectivity in one-dimensional soft random geometric graphs
    Wilsher, Michael
    Dettmann, Carl P.
    Ganesh, Ayalvadi
    [J]. PHYSICAL REVIEW E, 2020, 102 (06)
  • [38] Nearly bipartite graphs
    Gyori, E
    Nikiforov, V
    Schelp, RH
    [J]. DISCRETE MATHEMATICS, 2003, 272 (2-3) : 187 - 196
  • [39] Congruent graphs and the connectivity of graphs
    Whitney, H
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1932, 54 : 150 - 168
  • [40] Zero-One Law for Connectivity in Superposition of Random Key Graphs on Random Geometric Graphs
    Tang, Y.
    Li, Q. L.
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2015, 2015