Semi-Implicit Solution of the Convection-Diffusion Problems with Applications in Fluid Dynamics

被引:0
|
作者
Dolejsi, Vit [1 ]
Holik, Martin [1 ]
Hozman, Jiri [1 ]
Vlasak, Miloslav [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Prague 18675 8, Czech Republic
关键词
DISCONTINUOUS GALERKIN METHOD; FINITE-ELEMENT-METHOD; NAVIER-STOKES; NUMERICAL-SOLUTION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We deal with the time discretization of the system of ordinary differential equations arising from the discontinuous Galerkin discretization of a scalar convection-diffusion equation. We discuss several semi-implicit techniques, which lead to a sufficiently stable scheme and to a necessity to solve only linear problem at each time level. An extension to the system of the Navier-Stokes equations is presented and demonstrated by a numerical example.
引用
收藏
页码:1200 / 1203
页数:4
相关论文
共 50 条
  • [31] Analytical and approximate solution of two-dimensional convection-diffusion problems
    Gunerhan, Hatira
    INTERNATIONAL JOURNAL OF OPTIMIZATION AND CONTROL-THEORIES & APPLICATIONS-IJOCTA, 2020, 10 (01): : 73 - 77
  • [32] A meshless method for convection-diffusion problems
    Zerroukat, M
    ADVANCED COMPUTATIONAL METHODS IN HEAT TRANSFER V, 1998, : 403 - 414
  • [33] Robust discretizations of convection-diffusion problems
    Roos, HG
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 511 - 512
  • [34] On the integral transform solution of convection-diffusion problems within unbounded domain
    Almeida, AR
    Cotta, RM
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1999, 336 (05): : 821 - 832
  • [35] A VARIATIONAL FORMULATION FOR CONVECTION-DIFFUSION PROBLEMS
    ORTIZ, M
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1985, 23 (07) : 717 - 731
  • [36] Schwarz methods for convection-diffusion problems
    MacMullen, H
    O'Riordan, E
    Shishkin, GI
    NUMERICAL ANALYSIS AND ITS APPLICATIONS, 2001, 1988 : 544 - 551
  • [37] Implicit-explicit multistep finite element methods for nonlinear convection-diffusion problems
    Wei, C
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2001, 17 (02) : 93 - 104
  • [38] Efficiency of Semi-Implicit Schemes for Anisotropic Diffusion in the Hypercube
    Mendez-Rial, Roi
    Martin-Herrero, Julio
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (05) : 2389 - 2398
  • [39] Convergence analysis of a projection semi-implicit coupling scheme for fluid–structure interaction problems
    M. Astorino
    C. Grandmont
    Numerische Mathematik, 2010, 116 : 721 - 767
  • [40] Partitioned semi-implicit methods for simulation of biomechanical fluid-structure interaction problems
    Naseri, A.
    Lehmkuhl, O.
    Gonzalez, I.
    Oliva, A.
    7TH EUROPEAN THERMAL-SCIENCES CONFERENCE (EUROTHERM2016), 2016, 745