Semi-Implicit Solution of the Convection-Diffusion Problems with Applications in Fluid Dynamics

被引:0
|
作者
Dolejsi, Vit [1 ]
Holik, Martin [1 ]
Hozman, Jiri [1 ]
Vlasak, Miloslav [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Prague 18675 8, Czech Republic
关键词
DISCONTINUOUS GALERKIN METHOD; FINITE-ELEMENT-METHOD; NAVIER-STOKES; NUMERICAL-SOLUTION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We deal with the time discretization of the system of ordinary differential equations arising from the discontinuous Galerkin discretization of a scalar convection-diffusion equation. We discuss several semi-implicit techniques, which lead to a sufficiently stable scheme and to a necessity to solve only linear problem at each time level. An extension to the system of the Navier-Stokes equations is presented and demonstrated by a numerical example.
引用
收藏
页码:1200 / 1203
页数:4
相关论文
共 50 条
  • [1] Analysis of semi-implicit DGFEM for nonlinear convection-diffusion problems on nonconforming meshes
    Dolejsi, V.
    Feistauer, M.
    Hozman, J.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (29-30) : 2813 - 2827
  • [2] Optimal Error Estimates for Semi-implicit DG Time Discretization of Convection-Diffusion Problems
    Vlasak, Miloslav
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
  • [3] Higher order semi-implicit discontinuous Galerkin finite element schemes for nonlinear convection-diffusion problems
    Dolejsi, Vit
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 2006, : 432 - 439
  • [4] Analysis of Semi-Implicit Runge-Kutta-DGFEM for a Semilinear Convection-Diffusion Equation
    Dolejsi, Vit
    Vlasak, Miloslav
    Vlasakova, Zuzana
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 2017 - 2020
  • [5] Solution decompositions for linear convection-diffusion problems
    Linss, T
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2002, 21 (01): : 209 - 214
  • [6] Solution of convection-diffusion problems with the memory terms
    Kacur, J
    APPLIED NONLINEAR ANALYSIS, 1999, : 199 - 212
  • [7] Solution of convection-diffusion problems with the memory terms
    Kacur, J
    COMPUTATIONAL METHODS FOR FLOW AND TRANSPORT IN POROUS MEDIA, 2000, 17 : 93 - 106
  • [8] Solution of convection-diffusion problems with nonequilibrium adsorption
    Remesiková, M
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 169 (01) : 101 - 116
  • [9] Convection-Diffusion Problems
    Linss, Torsten
    LAYER-ADAPTED MESHES FOR REACTION-CONVECTION-DIFFUSION PROBLEMS, 2010, 1985 : 257 - 307
  • [10] Semi-implicit fluid-structure interaction in biomedical applications
    Schussnig, Richard
    Pacheco, Douglas R. Q.
    Kaltenbacher, Manfred
    Fries, Thomas -Peter
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 400