The asymptotic theory of global solutions for semilinear wave equations in three space dimensions

被引:1
|
作者
Lai, SY
Yang, X
Wu, YH
机构
[1] Curtin Univ Technol, Dept Math & Stat, Bentley, WA 6845, Australia
[2] SW Jiaotong Univ, Dept Appl Math, Chengdu, Peoples R China
[3] Sichuan Normal Univ, Dept Math, Chengdu 610066, Peoples R China
基金
中国国家自然科学基金;
关键词
semilinear wave equation; asymptotes of global solutions; application;
D O I
10.1016/j.camwa.2004.06.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the asymptotic theory of initial value problems for semilinear wave equations in three space dimensions. The well posedness and validity of formal approximations about time T = infinity are discussed in the classical sense of C-2. The results describe the validity of formal global solutions. Using a time-scale perturbation method, an application of the asymptotic theory is given to analyze a special wave equation in three space dimensions. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1535 / 1543
页数:9
相关论文
共 50 条