Fully Discrete Finite Element Methods for Two-Dimensional Bingham Flows

被引:2
|
作者
Fang, Cheng [1 ]
Li, Yuan [2 ]
机构
[1] Zhejiang Univ Finance & Econ, Sch Data Sci, Hangzhou 310018, Zhejiang, Peoples R China
[2] Wenzhou Univ, Dept Math, Wenzhou 325035, Peoples R China
基金
美国国家科学基金会;
关键词
PRESSURE STABILIZATION; NUMERICAL-SIMULATION; BOUNDARY-CONDITIONS; FLUID-FLOW; FORMULATION;
D O I
10.1155/2018/4865849
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents fully discrete stabilized finite element methods for two-dimensional Bingham fluid flow based on the method of regularization. Motivated by the Brezzi-Pitkaranta stabilized finite element method, the equal-order piecewise linear finite element approximation is used for both the velocity and the pressure. Based on Euler semi-implicit scheme, a fully discrete scheme is introduced. It is shown that the proposed fully discrete stabilized finite element scheme results in the h(1/2) error order for the velocity in the discrete norms corresponding to L-2(0,T; H-1(Omega)(2)) boolean AND L-infinity(0, T; L-2(Omega)(2)).
引用
收藏
页数:13
相关论文
共 50 条
  • [21] The discontinuous Galerkin spectral element methods for compressible flows on two-dimensional mixed grids
    Li, Wanai
    Pan, Jianhua
    Ren, Yu-Xin
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 364 : 314 - 346
  • [22] FINITE-ELEMENT ANALYSIS OF TWO-DIMENSIONAL PERISTALTIC FLOWS (1ST REPORT, FINITE-ELEMENT SOLUTIONS).
    Takabatake, Shin
    Ayukawa, Kyozo
    Sawa, Manabu
    Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, 1987, 53 (488): : 1207 - 1213
  • [23] Analysis of finite-volume discrete adjoint fields for two-dimensional compressible Euler flows
    Peter, Jacques
    Renac, Florent
    Labbe, Clement
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 449
  • [24] The linear, decoupled and fully discrete finite element methods for simplified two-phase ferrohydrodynamics model
    Chen, Xiaoyong
    Li, Rui
    Li, Jian
    APPLIED NUMERICAL MATHEMATICS, 2025, 210 : 123 - 146
  • [25] A Two-Grid Algorithm of Fully Discrete Galerkin Finite Element Methods for a Nonlinear Hyperbolic Equation
    Li, Kang
    Tan, Zhijun
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2020, 13 (04) : 1050 - 1067
  • [26] Discontinuous Galerkin finite-element method for transcritical two-dimensional shallow water flows
    Schwanenberg, D
    Harms, M
    JOURNAL OF HYDRAULIC ENGINEERING, 2004, 130 (05) : 412 - 421
  • [27] An equal-order mixed polygonal finite element for two-dimensional incompressible Stokes flows
    Vu-Huu, T.
    Le-Thanh, C.
    Nguyen-Xuan, H.
    Abdel-Wahab, M.
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2020, 79 : 92 - 108
  • [28] Impact on granular bed: validation of discrete element modeling results by means of two-dimensional finite element analysis
    Marzulli, Valentina
    Cisneros, Luis Armando Torres
    di Lernia, Annamaria
    Windows-Yule, Christopher Robert Kit
    Cafaro, Francesco
    Poeschel, Thorsten
    GRANULAR MATTER, 2020, 22 (01)
  • [29] Impact on granular bed: validation of discrete element modeling results by means of two-dimensional finite element analysis
    Valentina Marzulli
    Luis Armando Torres Cisneros
    Annamaria di Lernia
    Christopher Robert Kit Windows-Yule
    Francesco Cafaro
    Thorsten Pöschel
    Granular Matter, 2020, 22
  • [30] Two-dimensional discrete photonic crystals of finite size
    Le Floc'h, L
    Quintard, V
    Favennec, JF
    Boucher, YG
    PHOTONIC CRYSTAL MATERIALS AND NANOSTRUCTURES, 2004, 5450 : 481 - 491