FEM based Methods for Uncertainty Quantification in Electromagnetics

被引:0
|
作者
Jos, K. T. Gladwin [1 ]
Vinoy, K. J. [1 ]
机构
[1] Indian Inst Sci, Elect Commun Engn, Bangalore, Karnataka, India
关键词
Material uncertainties; Monte Carlo; Karhunen Loeve expansion; polynomial chaos expansion; Stochastic methods;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Many electromagnetic problems are subjected to variations in geometry and material properties, which have an impact on the performance. So quantifying these uncertainties helps in performance prediction and optimization in manufacturing of such electromagnetic systems. In addition, a statistical analysis of the response of such stochastic systems provide a better insight for experimental testing and validation. In this paper, the material uncertainty is modelled as a gaussian random process and is discretized using Karhunen Loeve expansion. The system response based on finite element modelling is analysed for its impact using perturbation method, intrusive and non-intrusive spectral stochastic finite element method (SSFEM) and stochastic collocation method. The stochastic responses from these methods are validated using Monte Carlo method, and the results indicate that SSFEM is the most computationally efficient approach for this problem.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Adjoint Methods for Uncertainty Quantification in Applied Computational Electromagnetics: FEM Scattering Examples
    Key, Cameron L.
    Smull, Aaron P.
    Estep, Donald J.
    Butler, Troy D.
    Notaros, Branislav M.
    [J]. APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2019, 34 (02): : 213 - 215
  • [2] Adjoint Methods for Uncertainty Quantification in Applied Computational Electromagnetics: FEM Scattering Examples
    Key, Cam
    Smull, Aaron
    Notaros, Branislav M.
    Estep, Donald
    Butler, Troy
    [J]. 2018 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM (ACES), 2018,
  • [3] Error Estimation and Uncertainty Quantification Based on Adjoint Methods in Computational Electromagnetics
    Notaros, Branislav M.
    Harmon, Jake
    Key, Cam
    Estep, Donald
    Butler, Troy
    [J]. 2019 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION AND USNC-URSI RADIO SCIENCE MEETING, 2019, : 221 - 222
  • [4] A Short Review of FDTD-Based Methods for Uncertainty Quantification in Computational Electromagnetics
    Zygiridis, Theodoros T.
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [5] Domain Uncertainty Quantification in Computational Electromagnetics
    Aylwin, Ruben
    Jerez-Hanckes, Carlos
    Schwab, Christoph
    Zech, Jakob
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2020, 8 (01): : 301 - 341
  • [6] High-Order Discontinuous Galerkin Methods for Computational Electromagnetics and Uncertainty Quantification
    Hesthaven, J. S.
    Warburton, T.
    Chauviere, C.
    Wilcox, L.
    [J]. SCIENTIFIC COMPUTING IN ELECTRICAL ENGINEERING SCEE 2008, 2010, 14 : 403 - +
  • [7] Kriging Methodology for Uncertainty Quantification in Computational Electromagnetics
    Kasdorf, Stephen
    Harmon, Jake J.
    Notaros, Branislav
    [J]. IEEE OPEN JOURNAL OF ANTENNAS AND PROPAGATION, 2024, 5 (02): : 474 - 486
  • [8] Multilevel domain uncertainty quantification in computational electromagnetics
    Aylwin, Ruben
    Jerez-Hanckes, Carlos
    Schwab, Christoph
    Zech, Jakob
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2023, 33 (04): : 877 - 921
  • [9] GPU Acceleration of Block Krylov Methods for FEM Problems in Electromagnetics
    Dziekonski, Adam
    Mrozowski, Michal
    [J]. 2017 IEEE MTT-S INTERNATIONAL CONFERENCE ON NUMERICAL ELECTROMAGNETIC AND MULTIPHYSICS MODELING AND OPTIMIZATION FOR RF, MICROWAVE, AND TERAHERTZ APPLICATIONS (NEMO), 2017, : 278 - 280
  • [10] Neumann-Expansion-Based FEM for Uncertainty Quantification of Permittivity Variations
    Tomy, Gladwin Jos Kurupasseril
    Vinoy, Kalarickaparambil Joseph
    [J]. IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2020, 19 (04): : 561 - 565