Adjoint Methods for Uncertainty Quantification in Applied Computational Electromagnetics: FEM Scattering Examples

被引:0
|
作者
Key, Cameron L. [1 ]
Smull, Aaron P. [1 ]
Estep, Donald J. [2 ]
Butler, Troy D. [3 ]
Notaros, Branislav M. [1 ]
机构
[1] Colorado State Univ, Elect & Comp Engn Dept, Ft Collins, CO 80523 USA
[2] Colorado State Univ, Dept Stat, Ft Collins, CO 80523 USA
[3] Univ Colorado, Dept Math & Stat Sci, Denver, CO 80202 USA
关键词
Adjoint methods; computational electromagnetics; finite element method; scattering; radar; sensitivity analysis; uncertainty quantification;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present methods for quantifying uncertainty and discretization error of numerical electromagnetics solvers based on adjoint operators and duality. We briefly introduce the concept of the adjoint operator and describe applications of adjoint solutions for predicting and analyzing numerical error and approximating sensitivity of a given quantity of interest to a given parameter. Forward solutions are based on the higher order finite element method (FEM).
引用
收藏
页码:213 / 215
页数:3
相关论文
共 26 条
  • [1] Adjoint Methods for Uncertainty Quantification in Applied Computational Electromagnetics: FEM Scattering Examples
    Key, Cam
    Smull, Aaron
    Notaros, Branislav M.
    Estep, Donald
    Butler, Troy
    [J]. 2018 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM (ACES), 2018,
  • [2] Adjoint methods for uncertainty quantification in applied computational electromagnetics: FEM scattering examples
    Key, Cameron L.
    Smull, Aaron P.
    Estep, Donald J.
    Butler, Troy D.
    Notaroš, Branislav M.
    [J]. Applied Computational Electromagnetics Society Journal, 2019, 34 (02): : 213 - 215
  • [3] Error Estimation and Uncertainty Quantification Based on Adjoint Methods in Computational Electromagnetics
    Notaros, Branislav M.
    Harmon, Jake
    Key, Cam
    Estep, Donald
    Butler, Troy
    [J]. 2019 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION AND USNC-URSI RADIO SCIENCE MEETING, 2019, : 221 - 222
  • [4] FEM based Methods for Uncertainty Quantification in Electromagnetics
    Jos, K. T. Gladwin
    Vinoy, K. J.
    [J]. 2018 IEEE INDIAN CONFERENCE ON ANTENNAS & PROPOGATION (INCAP), 2018,
  • [5] Domain Uncertainty Quantification in Computational Electromagnetics
    Aylwin, Ruben
    Jerez-Hanckes, Carlos
    Schwab, Christoph
    Zech, Jakob
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2020, 8 (01): : 301 - 341
  • [6] Kriging Methodology for Uncertainty Quantification in Computational Electromagnetics
    Kasdorf, Stephen
    Harmon, Jake J.
    Notaros, Branislav
    [J]. IEEE OPEN JOURNAL OF ANTENNAS AND PROPAGATION, 2024, 5 (02): : 474 - 486
  • [7] Multilevel domain uncertainty quantification in computational electromagnetics
    Aylwin, Ruben
    Jerez-Hanckes, Carlos
    Schwab, Christoph
    Zech, Jakob
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2023, 33 (04): : 877 - 921
  • [8] A Short Review of FDTD-Based Methods for Uncertainty Quantification in Computational Electromagnetics
    Zygiridis, Theodoros T.
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [9] High-Order Discontinuous Galerkin Methods for Computational Electromagnetics and Uncertainty Quantification
    Hesthaven, J. S.
    Warburton, T.
    Chauviere, C.
    Wilcox, L.
    [J]. SCIENTIFIC COMPUTING IN ELECTRICAL ENGINEERING SCEE 2008, 2010, 14 : 403 - +
  • [10] Network Methods Applied to Computational Electromagnetics
    Russer, Peter
    [J]. TELSIKS 2009, VOLS 1 AND 2, 2009, : 329 - 338