Energy-Efficient Virtual Resource Dynamic Integration Method in Cloud Computing

被引:21
|
作者
Wen, Yingyou [1 ,2 ]
Li, Zhi [2 ]
Jin, Shuyuan [3 ]
Lin, Chuan [1 ]
Liu, Zheng [1 ]
机构
[1] Northeastern Univ, Sch Comp Sci & Engn, Shenyang 110819, Liaoning, Peoples R China
[2] Neusoft Res, Shenyang 110179, Liaoning, Peoples R China
[3] Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Guangdong, Peoples R China
来源
IEEE ACCESS | 2017年 / 5卷
基金
中国国家自然科学基金; 国家高技术研究发展计划(863计划);
关键词
Cloud computing; energy consumption; genetic algorithm; green data center; VM migration;
D O I
10.1109/ACCESS.2017.2721548
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, with the development of cloud computing technology, the size of a data center is expanding rapidly. To minimize the energy consumption of a data center, we propose an energy-efficient virtual resource dynamic integration (VRDI) method. In the proposed VRDI method, first, by monitoring the load patterns of the physical machines (PMs) and the corresponding thresholds of PMs calculated using the statistical data, we propose a PM selection algorithm to find a set of PMs, which should be integrated. Furthermore, we propose a virtual machine (VM) selection algorithm based on minimum migration policy to select the VMs that are deployed on the integrated PMs. Finally, to solve the target VM placement, we propose a VM placement algorithm based on an improved genetic algorithm. Using the encoding, crossover and mutation operations of the genetic algorithm, we obtain an effective solution for the VM placement problem. The experiments show that the proposed VRDI method can reduce the energy consumption of data center and ensure the quality of service of the cloud applications developed on the VMs.
引用
收藏
页码:12214 / 12223
页数:10
相关论文
共 50 条
  • [31] Towards high-available and energy-efficient virtual computing environments in the cloud
    Sampaio, Altino M.
    Barbosa, Jorge G.
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2014, 40 : 30 - 43
  • [32] Recent Trends in Energy-Efficient Cloud Computing
    Mastelic, Toni
    Brandic, Ivona
    [J]. IEEE CLOUD COMPUTING, 2015, 2 (01): : 40 - 47
  • [33] Energy-Efficient Cloud Computing for Smart Phones
    Arya, Nancy
    Chaudhary, Sunita
    Taruna, S.
    [J]. EMERGING TRENDS IN EXPERT APPLICATIONS AND SECURITY, 2019, 841 : 111 - 115
  • [34] Efficient resource management for virtual desktop cloud computing
    Lien Deboosere
    Bert Vankeirsbilck
    Pieter Simoens
    Filip De Turck
    Bart Dhoedt
    Piet Demeester
    [J]. The Journal of Supercomputing, 2012, 62 : 741 - 767
  • [35] Efficient resource management for virtual desktop cloud computing
    Deboosere, Lien
    Vankeirsbilck, Bert
    Simoens, Pieter
    De Turck, Filip
    Dhoedt, Bart
    Demeester, Piet
    [J]. JOURNAL OF SUPERCOMPUTING, 2012, 62 (02): : 741 - 767
  • [36] Combined Forecasting Model of Cloud Computing Resource Load for Energy-Efficient IoT System
    Li, Hong-An
    Zhang, Min
    Yu, Keping
    Zhang, Jing
    Hua, Qiaozhi
    Wu, Bo
    Yu, Zhenhua
    [J]. IEEE ACCESS, 2019, 7 : 149542 - 149553
  • [37] Energy-efficient migration and consolidation algorithm of virtual machines in data centers for cloud computing
    Hongjian Li
    Guofeng Zhu
    Chengyuan Cui
    Hong Tang
    Yusheng Dou
    Chen He
    [J]. Computing, 2016, 98 : 303 - 317
  • [38] An ACO for energy-efficient and traffic-aware virtual machine placement in cloud computing
    Xing, Huanlai
    Zhu, Jing
    Qu, Rong
    Dai, Penglin
    Luo, Shouxi
    Iqbal, Muhammad Azhar
    [J]. SWARM AND EVOLUTIONARY COMPUTATION, 2022, 68
  • [39] A Survey of Machine Learning Applications for Energy-Efficient Resource Management in Cloud Computing Environments
    Demirci, Mehmet
    [J]. 2015 IEEE 14TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2015, : 1185 - 1190
  • [40] Energy-efficient migration and consolidation algorithm of virtual machines in data centers for cloud computing
    Li, Hongjian
    Zhu, Guofeng
    Cui, Chengyuan
    Tang, Hong
    Dou, Yusheng
    He, Chen
    [J]. COMPUTING, 2016, 98 (03) : 303 - 317