A Novel Change Detection Approach Based on Spectral Unmixing from Stacked Multitemporal Remote Sensing Images with a Variability of Endmembers

被引:8
|
作者
Wu, Ke [1 ]
Chen, Tao [1 ]
Xu, Ying [2 ,3 ]
Song, Dongwei [1 ]
Li, Haishan [1 ]
机构
[1] China Univ Geosci, Inst Geophys & Geomat, Wuhan 430074, Peoples R China
[2] Minist Nat Resources, Natl Satellite Ocean Applicat Serv, Beijing 100081, Peoples R China
[3] Minist Nat Resources, Key Lab Space Ocean Remote Sensing & Applicat, Beijing 100081, Peoples R China
关键词
spectral unmixing; change detection; stacked images; endmember; LAND-COVER CHANGE; UNSUPERVISED CHANGE DETECTION; CHANGE VECTOR ANALYSIS; MIXTURE ANALYSIS; FRACTION IMAGES; ALGORITHM;
D O I
10.3390/rs13132550
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Due to the high temporal repetition rates, median/low spatial resolution remote sensing images are the main data source of change detection (CD). It is worth noting that they contain a large number of mixed pixels, which makes adequately capturing the details in the resulting thematic map challenging. The spectral unmixing (SU) method is a potential solution to this problem, as it decomposes mixed pixels into a set of fractions of the land covers. However, there are accumulated errors in the fractional difference images, which lead to a poor change detection results. Meanwhile, the spectra variation of the endmember and the heterogeneity of the land cover materials cannot be fully considered in the traditional framework. In order to solve this problem, a novel change detection approach with image stacking and dividing based on spectral unmixing while considering the variability of endmembers (CD_SDSUVE) was proposed in this paper. Firstly, the remote sensing images at different times were stacked into a unified framework. After that, several patch images were produced by dividing the stacked images so that the similar endmembers according to each land cover can be completely extracted and compared. Finally, the multiple endmember spectral mixture analysis (MESMA) is performed, and the abundant images were combined to produce the entire change detection thematic map. This proposed algorithm was implemented and compared to four relevant state-of-the-art methods on three experimental data, whereby the results confirmed that it effectively improved the accuracy. In the simulated data, the overall accuracy (OA) and Kappa coefficient values were 99.61% and 0.99. In the two real data, the maximum of OA were acquired with 93.26% and 80.85%, which gained 14.88% and 13.42% over the worst results at most. Meanwhile, the Kappa coefficient value was consistent with the OA.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Change Detection from Remote Sensing Images based on Fractional Integral and Improved FLICM
    Wang, Fengping
    Wang, Weixing
    Cao, Ting
    Chen, Weiwei
    LIDAR IMAGING DETECTION AND TARGET RECOGNITION 2017, 2017, 10605
  • [42] A novel change detection approach for VHR remote sensing images by integrating multi-scale features
    Hao, Ming
    Shi, Wenzhong
    Ye, Yuanxin
    Zhang, Hua
    Deng, Kazhong
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2019, 40 (13) : 4910 - 4933
  • [43] A Novel Change Detection Method for Multitemporal Hyperspectral Images Based on Binary Hyperspectral Change Vectors
    Marinelli, Daniele
    Bovolo, Francesca
    Bruzzone, Lorenzo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (07): : 4913 - 4928
  • [44] A NOVEL CHANGE DETECTION METHOD FOR MULTITEMPORAL HYPERSPECTRAL IMAGES BASED ON A DISCRETE REPRESENTATION OF THE CHANGE INFORMATION
    Marinelli, Daniele
    Bovolo, Francesca
    Bruzzone, Lorenzo
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 161 - 164
  • [45] Kernel-based framework for multitemporal and multisource remote sensing data classification and change detection
    Camps-Valls, Gustavo
    Gomez-Chova, Luis
    Munoz-Mari, Jordi
    Rojo-Alvarez, Jose Luis
    Martinez-Ramon, Manel
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (06): : 1822 - 1835
  • [46] An Unsupervised Transformer-Based Multivariate Alteration Detection Approach for Change Detection in VHR Remote Sensing Images
    Lin, Yizhang
    Liu, Sicong
    Zheng, Yongjie
    Tong, Xiaohua
    Xie, Huan
    Zhu, Hongming
    Du, Kecheng
    Zhao, Hui
    Zhang, Jie
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 3251 - 3261
  • [47] An unsupervised and spectral rule-based approach for change detection from multi-temporal remote sensing imager
    Huang, Helingjie
    Li, Zhu
    Chen, Jianyu
    MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL REMOTE SENSING TECHNOLOGY, TECHNIQUES AND APPLICATIONS VI, 2016, 9880
  • [48] FastSAM-based Change Detection Network for Remote Sensing Images
    Kong, Xiangshuo
    Wang, Jiapeng
    Shen, Jiaxiao
    Ling, Zaiying
    Jing, Changwei
    Zhang, Dengrong
    Hu, Zunying
    2024 5TH INTERNATIONAL CONFERENCE ON GEOLOGY, MAPPING AND REMOTE SENSING, ICGMRS 2024, 2024, : 53 - 58
  • [49] Remote Sensing Images Change Detection Based on Level Set Model
    Ma, Dengcan
    Zhang, Yusha
    Tan, Kun
    Chen, Yu
    2018 FIFTH INTERNATIONAL WORKSHOP ON EARTH OBSERVATION AND REMOTE SENSING APPLICATIONS (EORSA), 2018, : 190 - 193
  • [50] Deep Siamese Networks Based Change Detection with Remote Sensing Images
    Yang, Le
    Chen, Yiming
    Song, Shiji
    Li, Fan
    Huang, Gao
    REMOTE SENSING, 2021, 13 (17)