A Novel Change Detection Approach Based on Spectral Unmixing from Stacked Multitemporal Remote Sensing Images with a Variability of Endmembers

被引:8
|
作者
Wu, Ke [1 ]
Chen, Tao [1 ]
Xu, Ying [2 ,3 ]
Song, Dongwei [1 ]
Li, Haishan [1 ]
机构
[1] China Univ Geosci, Inst Geophys & Geomat, Wuhan 430074, Peoples R China
[2] Minist Nat Resources, Natl Satellite Ocean Applicat Serv, Beijing 100081, Peoples R China
[3] Minist Nat Resources, Key Lab Space Ocean Remote Sensing & Applicat, Beijing 100081, Peoples R China
关键词
spectral unmixing; change detection; stacked images; endmember; LAND-COVER CHANGE; UNSUPERVISED CHANGE DETECTION; CHANGE VECTOR ANALYSIS; MIXTURE ANALYSIS; FRACTION IMAGES; ALGORITHM;
D O I
10.3390/rs13132550
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Due to the high temporal repetition rates, median/low spatial resolution remote sensing images are the main data source of change detection (CD). It is worth noting that they contain a large number of mixed pixels, which makes adequately capturing the details in the resulting thematic map challenging. The spectral unmixing (SU) method is a potential solution to this problem, as it decomposes mixed pixels into a set of fractions of the land covers. However, there are accumulated errors in the fractional difference images, which lead to a poor change detection results. Meanwhile, the spectra variation of the endmember and the heterogeneity of the land cover materials cannot be fully considered in the traditional framework. In order to solve this problem, a novel change detection approach with image stacking and dividing based on spectral unmixing while considering the variability of endmembers (CD_SDSUVE) was proposed in this paper. Firstly, the remote sensing images at different times were stacked into a unified framework. After that, several patch images were produced by dividing the stacked images so that the similar endmembers according to each land cover can be completely extracted and compared. Finally, the multiple endmember spectral mixture analysis (MESMA) is performed, and the abundant images were combined to produce the entire change detection thematic map. This proposed algorithm was implemented and compared to four relevant state-of-the-art methods on three experimental data, whereby the results confirmed that it effectively improved the accuracy. In the simulated data, the overall accuracy (OA) and Kappa coefficient values were 99.61% and 0.99. In the two real data, the maximum of OA were acquired with 93.26% and 80.85%, which gained 14.88% and 13.42% over the worst results at most. Meanwhile, the Kappa coefficient value was consistent with the OA.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Subpixel Change Detection of Multitemporal Remote Sensed Images Using Variability of Endmembers
    Wu, Ke
    Du, Qian
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (06) : 796 - 800
  • [2] MULTITEMPORAL SPECTRAL UNMIXING FOR CHANGE DETECTION IN HYPERSPECTRAL IMAGES
    Liu, Sicong
    Bruzzone, Lorenzo
    Bovolo, Francesca
    Du, Peijun
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 4165 - 4168
  • [3] An Unmixing-Based Change Detection Approach for Multiresolution Remote Sensing Images
    Benkouider, Yasmine Kheira
    Karoui, Moussa Sofiane
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [4] Statistical Similarity Based Change Detection for Multitemporal Remote Sensing Images
    Aktar M.
    Mamun M.A.
    Hossain M.A.
    Aktar, Mumu (mumu.ruet@gmail.com), 2017, Hindawi Limited, 410 Park Avenue, 15th Floor, 287 pmb, New York, NY 10022, United States (2017)
  • [5] Multitemporal remote sensing images change detection based on linear feature
    ATR Key Lab, National Univ. of Defense Technology, Changsha 410073, China
    Guofang Keji Daxue Xuebao, 2006, 5 (80-83):
  • [6] A CMRF-based approach to unsupervised change detection in multitemporal remote-sensing images
    Yuan Qi
    Zhao Rongchun
    ICEMI 2007: PROCEEDINGS OF 2007 8TH INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS, VOL II, 2007, : 898 - 904
  • [7] A super resolution approach for spectral unmixing of remote sensing images
    Li, Xi
    Tian, Liqiao
    Zhao, Xi
    Chen, Xiaoling
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2011, 32 (21) : 6091 - 6107
  • [8] SPECTRAL UNMIXING AND CLUSTERING TECHNIQUES FOR CHANGES DETECTION IN MULTITEMPORAL HYPERSPECTRAL REMOTE SENSING DATA
    Benkouider, Yasmine Kheira
    Karoui, Moussa Sofiane
    2022 IEEE MEDITERRANEAN AND MIDDLE-EAST GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (M2GARSS), 2022, : 29 - 32
  • [9] Sparse Unmixing-Based Change Detection for Multitemporal Hyperspectral Images
    Erturk, Alp
    Iordache, Marian-Daniel
    Plaza, Antonio
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (02) : 708 - 719
  • [10] Evidential analysis of difference images for change detection of multitemporal remote sensing images
    Chen, Yin
    Peng, Lijuan
    Cremers, Armin B.
    MIPPR 2017: REMOTE SENSING IMAGE PROCESSING, GEOGRAPHIC INFORMATION SYSTEMS, AND OTHER APPLICATIONS, 2018, 10611