Engineering Carrier Effective Masses in Ultrathin Quantum Wells of IrO2

被引:19
|
作者
Kawasaki, Jason K. [1 ,2 ,3 ,4 ]
Kim, Choong H. [5 ,6 ]
Nelson, Jocienne N. [2 ]
Crisp, Sophie [2 ]
Zollner, Christian J. [7 ]
Biegenwald, Eric [3 ]
Heron, John T. [3 ]
Fennie, Craig J. [7 ]
Schlom, Darrell G. [1 ,3 ]
Shen, Kyle M. [1 ,2 ]
机构
[1] Cornell Univ, Kavli Inst, Cornell Nanoscale Sci, Ithaca, NY 14853 USA
[2] Cornell Univ, Lab Atom & Solid State Phys, Ithaca, NY 14853 USA
[3] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA
[4] Univ Wisconsin, Dept Mat Sci & Engn, 1509 Univ Ave, Madison, WI 53706 USA
[5] Inst for Basic Sci Korea, Ctr Correlated Electron Syst, Seoul, South Korea
[6] Seoul Natl Univ, Dept Phys & Astron, Seoul, South Korea
[7] Cornell Univ, Dept Appl & Engn Phys, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
BAND-STRUCTURE; PHOTOEMISSION; SURFACE; STATES; AG; FILMS;
D O I
10.1103/PhysRevLett.121.176802
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The carrier effective mass plays a crucial role in modern electronic, optical, and catalytic devices and is fundamentally related to key properties of solids such as the mobility and density of states. Here we demonstrate a method to deterministically engineer the effective mass using spatial confinement in metallic quantum wells of the transition metal oxide IrO2. Using a combination of in situ angle-resolved photoemission spectroscopy measurements in conjunction with precise synthesis by oxide molecular-beam epitaxy, we show that the low-energy electronic subbands in ultrathin films of rutile IrO2 have their effective masses enhanced by up to a factor of 6 with respect to the bulk. The origin of this strikingly large mass enhancement is the confinement-induced quantization of the highly nonparabolic, three-dimensional electronic structure of IrO2 in the ultrathin limit. This mechanism lies in contrast to that observed in other transition metal oxides, in which mass enhancement tends to result from complex electron-electron interactions and is difficult to control. Our results demonstrate a general route towards the deterministic enhancement and engineering of carrier effective masses in spatially confined systems, based on an understanding of the three-dimensional bulk electronic structure.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] ENERGY-GAP DISCONTINUITIES AND EFFECTIVE MASSES FOR GAAS-ALXGA1-XAS QUANTUM WELLS
    MILLER, RC
    KLEINMAN, DA
    GOSSARD, AC
    [J]. PHYSICAL REVIEW B, 1984, 29 (12): : 7085 - 7087
  • [32] Quantum-interference origin and magnitude of 1/f noise in Dirac nodal line IrO2 nanowires at low temperatures
    Chien, Po-Yu
    Wu, Chih-Yuan
    Wang, Ruey-Tay
    Chiu, Shao-Pin
    Kirchner, Stefan
    Yeh, Sheng-Shiuan
    Lin, Juhn-Jong
    [J]. APPLIED PHYSICS LETTERS, 2023, 122 (14)
  • [33] INPLANE EFFECTIVE MASSES AND QUANTUM SCATTERING TIMES OF ELECTRONS IN NARROW MODULATION-DOPED INGAAS/INP QUANTUM-WELLS
    WIESNER, U
    PILLATH, J
    BAUHOFER, W
    KOHL, A
    KUSTERS, AM
    BRITTNER, S
    HEIME, K
    [J]. APPLIED PHYSICS LETTERS, 1994, 64 (19) : 2520 - 2522
  • [34] Direct observation of spatial distribution of carrier localization sites in ultrathin GaN/AlN quantum wells by spreading resistance microscopy
    Sviridov, D. E.
    Jmerik, V. N.
    Rouvimov, S.
    Nechaev, D. V.
    Kozlovsky, V. I.
    Ivanov, S. V.
    [J]. APPLIED PHYSICS LETTERS, 2019, 114 (06)
  • [35] In situ studies of the cathodic stability of single-crystalline IrO2(110) ultrathin films supported on RuO2(110)/Ru(0001) in an acidic environment
    Weber, Tim
    Abb, Marcel J. S.
    Evertsson, Jonas
    Sandroni, Martina
    Drnec, Jakub
    Vonk, Vedran
    Stierle, Andreas
    Lundgren, Edvin
    Over, Herbert
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (40) : 22956 - 22962
  • [36] CARRIER EFFECTIVE MASSES IN SYMMETRICALLY STRAINED (GAIN)AS/GA(PAS) MULTIPLE-QUANTUM-WELL STRUCTURES
    VOLK, M
    LUTGEN, S
    MARSCHNER, T
    STOLZ, W
    GOBEL, EO
    CHRISTIANEN, PCM
    MAAN, JC
    [J]. PHYSICAL REVIEW B, 1995, 52 (15): : 11096 - 11104
  • [37] Forbidden transitions and the effective masses of electrons and holes in In1-xGaxAs/InP quantum wells with compressive strain
    Shao, J
    Dörnen, A
    Baars, E
    Härle, V
    Scholz, F
    Guo, SL
    Chu, JH
    [J]. JOURNAL OF APPLIED PHYSICS, 2003, 93 (02) : 951 - 956
  • [38] Improved oxygen evolution activity of IrO2 by in situ engineering of an ultra-small Ir sphere shell utilizing a pulsed laser
    Zhong, Wenwu
    Lin, Zhiping
    Feng, Shangshen
    Wang, Da
    Shen, Shijie
    Zhang, Qinghua
    Gu, Lin
    Wang, Zongpeng
    Fang, Baizeng
    [J]. NANOSCALE, 2019, 11 (10) : 4407 - 4413
  • [39] Template-Assisted Growth of Ultrathin Single-Crystalline IrO2(110) Films on RuO2(110)/Ru(0001) and Its Thermal Stability
    Abb, Marcel J. S.
    Herd, Benjamin
    Over, Herbert
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (26): : 14725 - 14732
  • [40] Ultrathin Monolayer Mn2+-Alloyed 2D Perovskite Colloidal Quantum Wells
    Zhang, Haihua
    Yao, Jiannian
    Fu, Hongbing
    [J]. ADVANCED OPTICAL MATERIALS, 2021, 9 (06)