Parametrized SOMs for object recognition and pose estimation

被引:0
|
作者
Saalbach, A [1 ]
Heidemann, G [1 ]
Ritter, H [1 ]
机构
[1] Univ Bielefeld, Fac Technol, D-33501 Bielefeld, Germany
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present the "Parametrized Self-Organizing Map" (PSOM) as a method for 3D object recognition and pose estimation. The PSOM can be seen as a continuous extension of the standard Self-Organizing Map which generalizes the discrete set of reference vectors to a continuous manifold. In the context of visual learning, manifolds based on PSOMs can be used to represent the appearance of various objects. We demonstrate this approach and its merits in an application example.
引用
收藏
页码:902 / 907
页数:6
相关论文
共 50 条
  • [1] Representing object manifolds by parametrized SOMs
    Saalbach, A
    Heidemann, G
    Ritter, H
    [J]. 16TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL II, PROCEEDINGS, 2002, : 184 - 187
  • [2] Pose estimation in automatic object recognition
    Chang, CY
    Hoepner, R
    [J]. OPTICAL PATTERN RECOGNITION VII, 1996, 2752 : 233 - 240
  • [3] Object Recognition and Pose Estimation Using KLT
    Kim, Hye-Jin
    Lee, Jae Yeon
    Kim, Jae Hong
    Kim, Joong Bae
    Han, Woo Yong
    [J]. 2012 12TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS), 2012, : 214 - 217
  • [4] Object recognition and pose estimation using appearance manifolds
    Zhong-Hua Hao
    Shi-Wei Ma
    [J]. Advances in Manufacturing, 2013, 1 : 258 - 264
  • [5] The MOPED framework: Object recognition and pose estimation for manipulation
    Collet, Alvaro
    Martinez, Manuel
    Srinivasa, Siddhartha S.
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2011, 30 (10): : 1284 - 1306
  • [6] Clustered stochastic optimization for object recognition and pose estimation
    Gall, Juergen
    Rosenhahn, Bodo
    Seidel, Hans-Peter
    [J]. PATTERN RECOGNITION, PROCEEDINGS, 2007, 4713 : 32 - +
  • [7] Object recognition and pose estimation using appearance manifolds
    Zhong-Hua Hao
    Shi-Wei Ma
    [J]. Advances in Manufacturing, 2013, 1 (03) : 258 - 264
  • [8] Probabilistic image models for object recognition and pose estimation
    Hornegger, J
    Niemann, H
    [J]. STATE-OF-THE-ART IN CONTENT-BASED IMAGE AND VIDEO RETRIEVAL, 2001, 22 : 125 - 142
  • [9] Object recognition and pose estimation across illumination changes
    Muselet, D.
    Funt, B.
    Shi, L.
    Macaire, L.
    [J]. VISAPP 2007: PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS, VOLUME IU/MTSV, 2007, : 264 - +
  • [10] A novel probabilistic model for object recognition and pose estimation
    Hornegger, J
    Niemann, H
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2001, 15 (02) : 241 - 253