Probabilistic image models for object recognition and pose estimation

被引:0
|
作者
Hornegger, J [1 ]
Niemann, H [1 ]
机构
[1] Univ Erlangen Nurnberg, Inst Informat, D-91058 Erlangen, Germany
关键词
probabilistic object models; statistical object recognition;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this chapter we describe ongoing research that seeks to solve the object recognition and localization problem using a probabilistic framework. Computing statistical object models and calculating pose parameters are considered as nonlinear estimation problems. Recognition is done according to Bayes rule. We give an overview of a wide range of statistical models including a new modeling scheme for intensity images. This novel model avoids feature segmentation and it is discussed in detail including the description of the mathematical framework as well as the experimental evaluation.
引用
收藏
页码:125 / 142
页数:18
相关论文
共 50 条
  • [1] A novel probabilistic model for object recognition and pose estimation
    Hornegger, J
    Niemann, H
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2001, 15 (02) : 241 - 253
  • [2] Probabilistic Object Recognition and Pose Estimation by Fusing Multiple Algorithms
    Lutz, Matthias
    Stampfer, Dennis
    Schlegel, Christian
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2013, : 4244 - 4249
  • [3] Pose estimation in automatic object recognition
    Chang, CY
    Hoepner, R
    [J]. OPTICAL PATTERN RECOGNITION VII, 1996, 2752 : 233 - 240
  • [4] Parametrized SOMs for object recognition and pose estimation
    Saalbach, A
    Heidemann, G
    Ritter, H
    [J]. ARTIFICIAL NEURAL NETWORKS - ICANN 2002, 2002, 2415 : 902 - 907
  • [5] Object Recognition and Pose Estimation Using KLT
    Kim, Hye-Jin
    Lee, Jae Yeon
    Kim, Jae Hong
    Kim, Joong Bae
    Han, Woo Yong
    [J]. 2012 12TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS), 2012, : 214 - 217
  • [6] Probabilistic 3D object recognition and pose estimation using multiple interpretations generation
    Lu, Zhaojin
    Lee, Sukhan
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2011, 28 (12) : 2607 - 2618
  • [7] Textured/textureless object recognition and pose estimation using RGB-D image
    Wang, Wei
    Chen, Lili
    Liu, Ziyuan
    Kuehnlenz, Kolja
    Burschka, Darius
    [J]. JOURNAL OF REAL-TIME IMAGE PROCESSING, 2015, 10 (04) : 667 - 682
  • [8] Textured/textureless object recognition and pose estimation using RGB-D image
    Wei Wang
    Lili Chen
    Ziyuan Liu
    Kolja Kühnlenz
    Darius Burschka
    [J]. Journal of Real-Time Image Processing, 2015, 10 : 667 - 682
  • [9] Probabilistic Object and Viewpoint Models for Active Object Recognition
    Govender, Natasha
    Warrell, Jonathan
    Torr, Philip
    Nicolls, Fred
    [J]. AFRICON, 2013, 2013, : 1220 - 1226
  • [10] The MOPED framework: Object recognition and pose estimation for manipulation
    Collet, Alvaro
    Martinez, Manuel
    Srinivasa, Siddhartha S.
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2011, 30 (10): : 1284 - 1306