3D printing of a mechanically durable superhydrophobic porous membrane for oil-water separation

被引:187
|
作者
Lv, Juan [1 ,2 ]
Gong, Zhengjun [1 ]
He, Zhoukun [2 ]
Yang, Jian [2 ]
Chen, Yanqiu [2 ]
Tang, Changyu [2 ]
Liu, Yu [4 ]
Fan, Meikun [1 ]
Lau, Woon-Ming [3 ]
机构
[1] Southwest Jiaotong Univ, Fac Geosci & Environm Engn, Chengdu 610031, Peoples R China
[2] China Acad Engn Phys, Chengdu Green Energy & Green Mfg Technol R&D Ctr, Chengdu Dev Ctr Sci & Technol, Chengdu 610200, Peoples R China
[3] Univ Sci & Technol Beijing, Sch Math & Phys, Ctr Green Innovat, Beijing 100083, Peoples R China
[4] Jiangnan Univ, Sch Mech Engn, Jiangsu Key Lab Adv Food Mfg Equipment & Technol, Wuxi 214122, Peoples R China
基金
中国国家自然科学基金;
关键词
SPILL CLEANUP; OIL/WATER SEPARATION; ROBUST; FABRICATION; NANOPARTICLES; TRANSITION; SURFACES; COATINGS; CREATION; MESH;
D O I
10.1039/c7ta02202f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Although superhydrophobic porous membranes are considered to be very promising candidates for oil-water separation, their fabrication methods often involve complicated treatments to build a coating with micro/nano-features on a porous mesh (called "coating on a mesh structure"), which can lead to weak mechanical stability of the superhydrophobic surfaces and the formation of inhomogeneous membrane pores. Herein, we report a facile and environmentally friendly 3D printing approach to fabricate superhydrophobic membranes with an ordered porous structure for oil-water separation using hydrophobic nanosilica-filled polydimethylsiloxane (PDMS) ink. The addition of nanosilica can improve the mechanical strength of the ink and thus ensures the formation of desired topographical structures without the risk of collapsing during 3D printing. Through adjusting the geometrical parameters, a superhydrophobic PDMS membrane was obtained, which mainly depended on the roughness at the sub-millimeter scale. More importantly, the 3D printing approach described herein integrated the superhydrophobic surface into the porous framework and resulted in a mechanically durable superhydrophobic membrane, which successfully avoids the weak interface adhesion issue that arises from the traditional "coating on a mesh structure." Moreover, the pore size of the printed membrane could be easily adjusted via a computer program to optimize both the liquid flux and separation efficiency of the membranes. The maximum oil-water separation efficiency (similar to 99.6%) could be achieved for the printed porous membrane with the pore size of 0.37 mm, which also exhibited a high flux of similar to 23 700 L m(-2) h(-1).
引用
收藏
页码:12435 / 12444
页数:10
相关论文
共 50 条
  • [31] Magnetoactive Superhydrophobic Foams for Oil-Water Separation
    Calcagnile, Paola
    Fragouli, Despina
    Bayer, Ilker S.
    Anyfantis, George C.
    Athanassiou, Athanassia
    ADAPTIVE, ACTIVE AND MULTIFUNCTIONAL SMART MATERIALS SYSTEMS, 2013, 77 : 159 - 164
  • [32] Fabrication of robust 3D superhydrophobic material by a simple and low-cost method for oil-water separation and oil absorption
    Zhang, Chuqi
    Li, Yanmei
    Bai, Ningning
    Tan, Cui
    Cai, Peng
    Li, Qing
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2017, 224 : 117 - 124
  • [33] Superhydrophobic and superoleophilic PH-CNT membrane for emulsified oil-water separation
    Zhao, Yanhua
    Guo, Jiaxin
    Li, Yuchao
    Zhang, Xinning
    An, Alicia Kyoungjin
    Wang, Zuankai
    DESALINATION, 2022, 526
  • [34] Oil-water emulsion separation using intrinsically superoleophilic and superhydrophobic PVDF membrane
    Hai, Abdul
    Durrani, Ali Ahmed
    Selvaraj, Munirasu
    Banat, Fawzi
    Abu Haija, Mohammad
    SEPARATION AND PURIFICATION TECHNOLOGY, 2019, 212 : 388 - 395
  • [35] Fabrication of durable underoil superhydrophobic surfaces with self-cleaning and oil-water separation properties
    Ren, Wanfei
    Lian, Zhongxu
    Wang, Jiaqi
    Xu, Jinkai
    Yu, Huadong
    RSC ADVANCES, 2022, 12 (07) : 3838 - 3846
  • [36] Robust self-healing superhydrophobic cotton fabric for durable and efficient oil-water separation
    Zhang, Hongliang
    Guo, Zhiguang
    NEW JOURNAL OF CHEMISTRY, 2023, 47 (40) : 18769 - 18778
  • [37] Durable superhydrophobic and superoleophilic filter paper for oil-water separation prepared by a colloidal deposition method
    Du, Chuan
    Wang, Jiadao
    Chen, Zhifu
    Chen, Darong
    APPLIED SURFACE SCIENCE, 2014, 313 : 304 - 310
  • [38] Facile preparation of superhydrophobic metal foam for durable and high efficient continuous oil-water separation
    Hu, Yue
    Zhu, Yanji
    Wang, Huaiyuan
    Wang, Chijia
    Li, Hongwei
    Zhang, Xiguang
    Yuan, Ruixia
    Zhao, Yiming
    CHEMICAL ENGINEERING JOURNAL, 2017, 322 : 157 - 166
  • [39] Facile preparation of durable superhydrophobic DTMS@HKUST-1 wood membrane for continuous oil-water separation in harsh conditions
    Zhang, Xupeng
    Li, Kaiqian
    Li, Xianghong
    Guo, Longxin
    Deng, Shuduan
    Xu, Zhiping
    Zhu, Gang
    SURFACES AND INTERFACES, 2024, 44
  • [40] Fabrication and characterization of superhydrophobic copper fiber sintered felt with a 3D space network structure and their oil-water separation
    Hu, Jinyi
    Yuan, Wei
    Chen, Wenjun
    Xu, Xiaotian
    Tang, Yong
    APPLIED SURFACE SCIENCE, 2016, 389 : 1192 - 1201