In situ epitaxial MgB2 thin films for superconducting electronics

被引:393
|
作者
Zeng, XH
Pogrebnyakov, AV
Kotcharov, A
Jones, JE
Xi, XX
Lysczek, EM
Redwing, JM
Xu, SY
Lettieri, J
Schlom, DG
Tian, W
Pan, XQ
Liu, ZK
机构
[1] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[3] Penn State Univ, Inst Mat Res, University Pk, PA 16802 USA
[4] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
关键词
D O I
10.1038/nmat703
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The newly discovered 39-K superconductor MgB21 holds great promise for superconducting electronics. Like the conventional superconductor Nb, MgB2 is a phonon-mediated superconductor 2, with a relatively long coherence length3. These properties make the prospect of fabricating reproducible uniform Josephson junctions, the fundamental element of superconducting circuits, much more favourable for MgB2 than for high-temperature superconductors. The higher transition temperature and larger energy gap4,5 of MgB 2 promise higher operating temperatures and potentially higher speeds than Nb-based integrated circuits. However, success in MgB2 Josephson junctions has been limited because of the lack of an adequate thin-film technology6,7. Because a superconducting integrated circuit uses a multilayer of superconducting, insulating and resistive films, an in situ process in which MgB2 is formed directly on the substrate is desirable. Here we show that this can be achieved by hybrid physical-chemical vapour deposition. The epitaxially grown MgB2 films show a high transition temperature and low resistivity, comparable to the best bulk samples, and their surfaces are smooth. This advance removes a major barrier for superconducting electronics using MgB2.
引用
收藏
页码:35 / 38
页数:4
相关论文
共 50 条
  • [21] Preparation of MgB2 superconducting thin films at low temperature
    Zhou, Zhangyu
    Yang, Fashun
    JianYang
    Wang, Song
    Fu, Xinghua
    ADVANCED MECHANICAL DESIGN, PTS 1-3, 2012, 479-481 : 1781 - 1785
  • [22] Fabrication of Superconducting Nanowires Using MgB2 Thin Films
    Shimakage, Hisashi
    Wang, Zhen
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2013, 23 (03)
  • [23] Synthesis and Optical Studies of Superconducting MgB2 Thin Films
    M. Bleiweiss
    J. Amirzadeh
    M. Yin
    A. Lungu
    T. Datta
    Journal of Superconductivity, 2005, 18 : 567 - 572
  • [24] Synthesis and optical studies of superconducting MgB2 thin films
    Bleiweiss, M
    Amirzadeh, J
    Yin, M
    Lungu, A
    Datta, T
    JOURNAL OF SUPERCONDUCTIVITY, 2005, 18 (04): : 567 - 572
  • [25] Fabrication of as-grown superconducting MgB2 thin films
    Ohkubo, H
    Akinaga, M
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2004, 408 : 898 - 899
  • [26] Preparation of MgB2 superconducting thin films by magnetron sputtering
    Micunek, R
    Plecenik, A
    Kús, P
    Zahoran, M
    Tomásek, M
    Plecenik, T
    Gregor, M
    Stefecka, M
    Jacko, V
    Gregus, J
    Granicic, B
    Kubinec, M
    Mahel, M
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2006, 435 (1-2): : 78 - 81
  • [27] The effect of MgB2 layer thickness on superconducting properties of MgB2/Ni multilayer thin films
    Takahashi, Ken-ichiro
    Kitaguchi, Hitoshi
    Doi, Toshiya
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2009, 22 (02):
  • [28] Superconducting properties and microstructures of MgB2 thin films prepared by the ex situ annealing process
    Moon, SH
    Kim, HM
    Yim, SS
    Kim, KB
    Kim, YW
    Yoo, SI
    Lee, HN
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2004, 17 (02): : S15 - S19
  • [29] In-situ growth of superconducting MgB2 thin films by HPCVD method at low temperature
    Yang, J.
    Wang, S.
    Yang, F. S.
    Zhang, Z. P.
    Ding, Z.
    Fu, X. H.
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2007, 467 (1-2): : 1 - 3
  • [30] RBS characterization of MgB2 superconducting films annealed ex situ and in situ
    Cheang-Wong, JC
    Jergel, M
    Jergel, M
    Chromik, S
    Strbík, V
    Falcony, C
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2003, 16 (08): : 879 - 884