The choice of smoothing parameter in nonparametric regression through Wild Bootstrap

被引:22
|
作者
Manteiga, WG
Miranda, M
González, AP
机构
[1] Univ Vigo, Higher Tech Sch Comp Engn, Orense 32004, Spain
[2] Univ Granada, Fac Sci, E-18071 Granada, Spain
[3] Univ Santiago de Compostela, Fac Math, Santiago De Compostela 15706, Spain
关键词
bandwidth; local linear regression; mean squared error; Wild Bootstrap;
D O I
10.1016/j.csda.2003.12.007
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A bootstrap method to estimate the mean squared error and the smoothing parameter for the multidimensional regression local linear estimator is proposed. This method is based on resampling of the estimated residuals. It uses a bootstrap estimator of the mean squared error to select an asymptotically optimal bandwidth parameter. This is achieved by showing that the mean squared error and its bootstrap estimator are very closed. Thus, the smoothing parameter minimizing the mean squared error is asymptotically close to the smoothing parameter minimizing the bootstrap estimator of the mean squared error. The results are extended to the case in which the response variable contains missing observations. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:487 / 515
页数:29
相关论文
共 50 条