USING THE BOOTSTRAP TO ESTIMATE MEAN SQUARED ERROR AND SELECT SMOOTHING PARAMETER IN NONPARAMETRIC PROBLEMS

被引:188
|
作者
HALL, P
机构
[1] Australian National University, Canberra
关键词
bias; bootstrap; density estimation; mean squared error; nonparametric regression; smoothing parameter;
D O I
10.1016/0047-259X(90)90080-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We describe a bootstrap method for estimating mean squared error and smoothing parameter in nonparametric problems. The method involves using a resample of smaller size than the original sample. There are many applications, which are illustrated using the special cases of nonparametric density estimation, nonparametric regression, and tail parameter estimation. © 1990.
引用
收藏
页码:177 / 203
页数:27
相关论文
共 50 条