A Deep Learning Framework Based on Multisensor Fusion Information to Identify the Airplane Wake Vortex

被引:5
|
作者
Ai, Yi [1 ]
Wang, Yuanji [1 ]
Pan, Weijun [1 ]
Wu, Dingjie [1 ]
机构
[1] Civil Aviat Flight Univ China, Deyang, Peoples R China
基金
美国国家科学基金会;
关键词
FLIGHT-SIMULATOR; ENCOUNTERS; VORTICES; DECAY;
D O I
10.1155/2021/4819254
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Along with the rapid improvement of the aviation industry, flight density also increases with the increase of flight demand, which directly leads to the increasingly prominent influence of wake vortex on flight safety and aviation control. In this paper, we propose a new joint framework-a deep learning framework-based on multisensor fusion information to address the detection and identification of wake vortices in the near-Earth phase. By setting multiple Doppler lidar in near-Earth flight areas at different airports, a large number of accurate wind field data are captured for wake vortex detection. Meanwhile, the airport surveillance radar is used to locate the wake vortex. In the deep learning framework, an end-to-end CNN-LSTM model has been employed to identify the airplane wake vortex from the data detected by Doppler lidar and the airport surveillance radar. The variables including the wind field matrix, positioning matrix, and the variance sequence are used as inputs to the CNN channel and LSTM channel. The identification and location information of the wake vortex in the wind field image will be output by the framework. Experiments show that the joint framework based on a multisensor possesses stronger ability to capture local feature and sequence feature than the traditional CNN or LSTM model.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Multisensor Fusion Time-Frequency Analysis of Thruster Blade Fault Diagnosis Based on Deep Learning
    Tsai, Chia-Ming
    Wang, Chiao-Sheng
    Chung, Yu-Jen
    Sun, Yung-Da
    Perng, Jau-Woei
    IEEE SENSORS JOURNAL, 2022, 22 (20) : 19761 - 19771
  • [22] A fusion deep learning framework based on breast cancer grade prediction
    Tao, Weijian
    Zhang, Zufan
    Liu, Xi
    Yang, Maobin
    Digital Communications and Networks, 2024, 10 (06) : 1782 - 1789
  • [23] A fusion deep learning framework based on breast cancer grade prediction
    Weijian Tao
    Zufan Zhang
    Xi Liu
    Maobin Yang
    Digital Communications and Networks, 2024, 10 (06) : 1782 - 1789
  • [24] An Effective Deep Transfer Learning and Information Fusion Framework for Medical Visual Question Answering
    Liu, Feifan
    Peng, Yalei
    Rosen, Max P.
    EXPERIMENTAL IR MEETS MULTILINGUALITY, MULTIMODALITY, AND INTERACTION (CLEF 2019), 2019, 11696 : 238 - 247
  • [25] A Novel Ensemble Learning-Based Multisensor Information Fusion Method for Rolling Bearing Fault Diagnosis
    Tong, Jinyu
    Liu, Cang
    Bao, Jiahan
    Pan, Haiyang
    Zheng, Jinde
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [26] A framework for occupancy prediction based on image information fusion and machine learning
    Yang, Yuren
    Yuan, Ye
    Pan, Ting
    Zang, Xingyu
    Liu, Gang
    BUILDING AND ENVIRONMENT, 2022, 207
  • [27] Data-Driven Fault Diagnosis for Rolling Bearings Based on Machine Learning and Multisensor Information Fusion
    Yang, Shuming
    Xie, Changlin
    Cheng, Yuqiang
    Wang, Biao
    Ma, Xunyi
    Wang, Zinuo
    IEEE SENSORS JOURNAL, 2025, 25 (02) : 3452 - 3464
  • [28] A Novel Ensemble Learning-Based Multisensor Information Fusion Method for Rolling Bearing Fault Diagnosis
    Tong, Jinyu
    Liu, Cang
    Bao, Jiahan
    Pan, Haiyang
    Zheng, Jinde
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [29] A Novel Ensemble Learning-Based Multisensor Information Fusion Method for Rolling Bearing Fault Diagnosis
    Tong, Jinyu
    Liu, Cang
    Bao, Jiahan
    Pan, Haiyang
    Zheng, Jinde
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [30] InSAR Phase Unwrapping by Deep Learning Based on Gradient Information Fusion
    Li, Liutong
    Zhang, Hong
    Tang, Yixian
    Wang, Chao
    Gu, Feng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19