Development and validation of a risk-score model for opioid overdose using a national claims database
被引:6
|
作者:
Heo, Kyu-Nam
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Coll Pharm, Seoul 08826, South Korea
Seoul Natl Univ, Res Inst Pharmaceut Sci, Seoul 08826, South KoreaSeoul Natl Univ, Coll Pharm, Seoul 08826, South Korea
Heo, Kyu-Nam
[1
,2
]
Lee, Ju-Yeun
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Coll Pharm, Seoul 08826, South Korea
Seoul Natl Univ, Res Inst Pharmaceut Sci, Seoul 08826, South KoreaSeoul Natl Univ, Coll Pharm, Seoul 08826, South Korea
Lee, Ju-Yeun
[1
,2
]
Ah, Young-Mi
论文数: 0引用数: 0
h-index: 0
机构:
Yeungnam Univ, Coll Pharm, Gyongsan 38541, Gyeongbuk, South KoreaSeoul Natl Univ, Coll Pharm, Seoul 08826, South Korea
Ah, Young-Mi
[3
]
机构:
[1] Seoul Natl Univ, Coll Pharm, Seoul 08826, South Korea
[2] Seoul Natl Univ, Res Inst Pharmaceut Sci, Seoul 08826, South Korea
[3] Yeungnam Univ, Coll Pharm, Gyongsan 38541, Gyeongbuk, South Korea
Opioid overdose can be serious adverse effects of opioid analgesics. Thus, several strategies to mitigate risk and reduce the harm of opioid overdose have been developed. However, despite a marked increase in opioid analgesic consumption in Korea, there have been no tools predicting the risk of opioid overdose in the Korean population. Using the national claims database of the Korean population, we identified patients who were incidentally prescribed non-injectable opioid analgesic (NIOA) at least once from 2017 to 2018 (N = 1,752,380). Among them, 866 cases of opioid overdose occurred, and per case, four controls were selected. Patients were randomly allocated to the development (80%) and validation (20%) cohort. Thirteen predictive variables were selected via logistic regression modelling, and a risk-score was assigned for each predictor. Our model showed good performance with c-statistics of 0.84 in the validation cohort. The developed risk score model is the first tool to identify high-risk patients for opioid overdose in Korea. It is expected to be applicable in the clinical setting and useful as a national level surveillance tool due to the easily calculable and identifiable predictors available from the claims database.
机构:
Laureate Inst Brain Res, 6655 South Yale Ave, Tulsa, OK 74136 USALaureate Inst Brain Res, 6655 South Yale Ave, Tulsa, OK 74136 USA
Ekhtiari, Hamed
Kuplicki, Rayus
论文数: 0引用数: 0
h-index: 0
机构:
Laureate Inst Brain Res, 6655 South Yale Ave, Tulsa, OK 74136 USALaureate Inst Brain Res, 6655 South Yale Ave, Tulsa, OK 74136 USA
Kuplicki, Rayus
Pruthi, Asheema
论文数: 0引用数: 0
h-index: 0
机构:
Laureate Inst Brain Res, 6655 South Yale Ave, Tulsa, OK 74136 USA
Univ Oklahoma, Sch Community Med, 4502 E 41st, Tulsa, OK 74135 USALaureate Inst Brain Res, 6655 South Yale Ave, Tulsa, OK 74136 USA
Pruthi, Asheema
Paulus, Martin
论文数: 0引用数: 0
h-index: 0
机构:
Laureate Inst Brain Res, 6655 South Yale Ave, Tulsa, OK 74136 USALaureate Inst Brain Res, 6655 South Yale Ave, Tulsa, OK 74136 USA
机构:
USC Roski Eye Inst, Ophthalmol, Los Angeles, CA USAUSC Roski Eye Inst, Ophthalmol, Los Angeles, CA USA
Toy, Brian C.
Zhang, Youning
论文数: 0引用数: 0
h-index: 0
机构:
USC Roski Eye Inst, Ophthalmol, Los Angeles, CA USAUSC Roski Eye Inst, Ophthalmol, Los Angeles, CA USA
Zhang, Youning
Amin, Sarina
论文数: 0引用数: 0
h-index: 0
机构:
USC Roski Eye Inst, Ophthalmol, Los Angeles, CA USAUSC Roski Eye Inst, Ophthalmol, Los Angeles, CA USA
Amin, Sarina
Rao, Narsing A.
论文数: 0引用数: 0
h-index: 0
机构:
USC Roski Eye Inst, Ophthalmol, Los Angeles, CA USAUSC Roski Eye Inst, Ophthalmol, Los Angeles, CA USA
Rao, Narsing A.
Ipapo, Khristina
论文数: 0引用数: 0
h-index: 0
机构:
Univ Southern Calif, Leonard D Schaeffer Ctr Hlth Policy & Econ, Los Angeles, CA USAUSC Roski Eye Inst, Ophthalmol, Los Angeles, CA USA
Ipapo, Khristina
Seabury, Seth A.
论文数: 0引用数: 0
h-index: 0
机构:
USC Roski Eye Inst, Ophthalmol, Los Angeles, CA USA
Univ Southern Calif, Leonard D Schaeffer Ctr Hlth Policy & Econ, Los Angeles, CA USAUSC Roski Eye Inst, Ophthalmol, Los Angeles, CA USA