Comparative performance on photovoltaic model parameter identification via bio-inspired algorithms

被引:83
|
作者
Ma, Jieming [1 ]
Bi, Ziqiang [1 ]
Ting, Tiew On [2 ]
Hao, Shiyuan [3 ]
Hao, Wanjun [1 ]
机构
[1] Suzhou Univ Sci & Technol, Sch Elect & Informat Engn, 1 Ke Rui Rd, Suzhou 215009, Peoples R China
[2] Xian Jiaotong Liverpool Univ, Dept Elect & Elect Engn, Sci Bldg,111 Renai Rd, Suzhou 215123, Peoples R China
[3] E China Univ Sci & Technol, Sch Informat Sci & Engn, Shanghai 201424, Peoples R China
基金
中国国家自然科学基金;
关键词
Parameter estimation; Modeling; Optimization methods; Photovoltaic cells; DOUBLE-DIODE MODEL; SOLAR-CELLS; EXTRACTION; OPTIMIZATION;
D O I
10.1016/j.solener.2016.03.033
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Photovoltaic (PV) models are usually composed by nonlinear exponential functions, where several unknown parameters must be identified from a set of experimental measurements. Owing to the ability to handle nonlinear functions regardless of the derivatives information, bio-inspired algorithms for parameter identification have gained much attention. In this work, six bio-inspired optimization algorithms, i.e. genetic algorithm, differential evolution, particle swarm optimization, bacteria foraging algorithm, artificial bee colony, and cuckoo search are compared statistically by testing over single-diode models to evaluate their performance in terms of accuracy and stability under uniform solar irradiance and various environmental conditions. Various parameter settings of these algorithms are used in the study. Results indicate that cuckoo search algorithm is more robust and precise among these bio-inspired optimization algorithms. In addition, this paper shows that bio-inspected algorithms are capable of improving the existing PV models by using optimized parameters. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:606 / 616
页数:11
相关论文
共 50 条
  • [1] Face Identification based Bio-Inspired Algorithms
    Ghouzali, Sanaa
    Larabi, Souad
    [J]. INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2020, 17 (01) : 118 - 127
  • [2] Parameter estimation for crop growth model using evolutionary and bio-inspired algorithms
    Trejo Zuniga, Elmer Cesar
    Lopez Cruz, Irineo Lorenzo
    Ruiz Garcia, Agustin
    [J]. APPLIED SOFT COMPUTING, 2014, 23 : 474 - 482
  • [3] PARAMETER ESTIMATION FOR CROP GROWTH MODEL USING EVOLUTIONARY AND BIO-INSPIRED ALGORITHMS
    Cesar Trejo-Zuniga, E.
    Lorenzo Lopez-Cruz, I.
    Ruiz-Garcia, Agustin
    [J]. AGROCIENCIA, 2013, 47 (07) : 671 - 682
  • [4] Bio-inspired optimization algorithms for optical parameter extraction of dielectric materials: A comparative study
    Saber, Md Ghulam
    Shahriar, Kh Arif
    Ahmed, Ashik
    Sagor, Rakibul Hasan
    [J]. CHINESE PHYSICS B, 2016, 25 (10)
  • [5] Bio-inspired optimization algorithms for optical parameter extraction of dielectric materials: A comparative study
    Md Ghulam Saber
    Kh Arif Shahriar
    Ashik Ahmed
    Rakibul Hasan Sagor
    [J]. Chinese Physics B, 2016, 25 (10) : 202 - 208
  • [6] Modeling and Simulation of Photovoltaic Modules Using Bio-Inspired Algorithms
    Provensi, Lucas Lima
    de Souza, Renata Mariane
    Grala, Gabriel Henrique
    Bergamasco, Rosangela
    Krummenauer, Rafael
    Goncalves Andrade, Cid Marcos
    [J]. INVENTIONS, 2023, 8 (05)
  • [7] A comparative study on bio-inspired algorithms for sentiment analysis
    Yadav, Ashima
    Vishwakarma, Dinesh Kumar
    [J]. CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2020, 23 (04): : 2969 - 2989
  • [8] A comparative study on bio-inspired algorithms for sentiment analysis
    Ashima Yadav
    Dinesh Kumar Vishwakarma
    [J]. Cluster Computing, 2020, 23 : 2969 - 2989
  • [9] Parameter Estimation of Photovoltaic Module Using Bio-inspired Firefly Algorithm
    Louzazni, Mohamed
    Khouya, Ahmed
    Amechnoue, Khalid
    Craciunescu, Aurelian
    [J]. PROCEEDINGS OF 2016 INTERNATIONAL RENEWABLE & SUSTAINABLE ENERGY CONFERENCE (IRSEC' 16), 2016, : 591 - +
  • [10] Comparative Study of Impacts of Typical Bio-Inspired Optimization Algorithms on Source Inversion Performance
    Mao, Shushuai
    Hu, Feng
    Lang, Jianlei
    Chen, Tian
    Cheng, Shuiyuan
    [J]. FRONTIERS IN ENVIRONMENTAL SCIENCE, 2022, 10