Applications of Deep-Learning in Exploiting Large-Scale and Heterogeneous Compound Data in Industrial Pharmaceutical Research

被引:32
|
作者
David, Laurianne [1 ,2 ]
Arus-Pous, Josep [1 ,3 ]
Karlsson, Johan [4 ]
Engkvist, Ola [1 ]
Bjerrum, Esben Jannik [1 ]
Kogej, Thierry [1 ]
Kriegl, Jan M. [5 ]
Beck, Bernd [5 ]
Chen, Hongming [1 ,6 ]
机构
[1] AstraZeneca, Biopharmaceut R&D, Discovery Sci, Hit Discovery, Gothenburg, Sweden
[2] Rhein Friedrich Wilhelms Univ Bonn, Dept Life Sci Informat, B IT, Bonn, Germany
[3] Univ Bern, Dept Chem & Biochem, Bern, Switzerland
[4] AstraZeneca, Biopharmaceut R&D, Discovery Sci, Quantitat Biol, Gothenburg, Sweden
[5] Boehringer Ingelheim Pharma GmbH & Co KG, Dept Med Chem, Biberach, Germany
[6] Chem & Chem Biol Ctr, Guangzhou Regenerat Med & Hlth Guangdong Lab, Guangzhou, Guangdong, Peoples R China
基金
欧盟地平线“2020”;
关键词
Artificial intelligence; deep learning; Chemogenomics; Large-scale data; pharmaceutical industry; INTERFERENCE COMPOUNDS PAINS; HUMAN-GENOME-PROJECT; DRUG DISCOVERY; ASSAY INTERFERENCE; SCREENING LIBRARIES; TARGET PREDICTION; MICROSCOPY IMAGES; CONNECTIVITY MAP; SMALL MOLECULES; DESIGN;
D O I
10.3389/fphar.2019.01303
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
In recent years, the development of high-throughput screening (HTS) technologies and their establishment in an industrialized environment have given scientists the possibility to test millions of molecules and profile them against a multitude of biological targets in a short period of time, generating data in a much faster pace and with a higher quality than before. Besides the structure activity data from traditional bioassays, more complex assays such as transcriptomics profiling or imaging have also been established as routine profiling experiments thanks to the advancement of Next Generation Sequencing or automated microscopy technologies. In industrial pharmaceutical research, these technologies are typically established in conjunction with automated platforms in order to enable efficient handling of screening collections of thousands to millions of compounds. To exploit the ever-growing amount of data that are generated by these approaches, computational techniques are constantly evolving. In this regard, artificial intelligence technologies such as deep learning and machine learning methods play a key role in cheminformatics and bio-image analytics fields to address activity prediction, scaffold hopping, de novo molecule design, reaction/retrosynthesis predictions, or high content screening analysis. Herein we summarize the current state of analyzing large-scale compound data in industrial pharmaceutical research and describe the impact it has had on the drug discovery process over the last two decades, with a specific focus on deep-learning technologies.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] ShaleSeg: Deep-learning dataset and models for practical fracture segmentation of large-scale shale CT images
    Wu, Yanfang
    Xiao, Zhuowei
    Li, Juan
    Li, Shouding
    Zhang, Luqing
    Zhou, Jian
    Zhang, Zhaobin
    He, Jianming
    Li, Xiao
    INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2024, 180
  • [32] Application of an Improved Deep-Learning Framework for Large-Scale Subsurface Flow Problems with Varying Well Controls
    Huang, Hu
    Gong, Bin
    Sun, Wenyue
    Qin, Feng
    Tang, Shenglai
    Li, Hui
    SPE JOURNAL, 2024, 29 (01): : 574 - 591
  • [33] Active fire detection in Landsat-8 imagery: A large-scale dataset and a deep-learning study
    de Almeida Pereira, Gabriel Henrique
    Fusioka, Andre Minoro
    Nassu, Bogdan Tomoyuki
    Minetto, Rodrigo
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 178 : 171 - 186
  • [34] Large-scale transport simulation by deep learning
    Jie Pan
    Nature Computational Science, 2021, 1 : 306 - 306
  • [35] Tractable large-scale deep reinforcement learning
    Sarang, Nima
    Poullis, Charalambos
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2023, 232
  • [36] Large-scale transport simulation by deep learning
    Pan, Jie
    NATURE COMPUTATIONAL SCIENCE, 2021, 1 (05): : 306 - 306
  • [37] The three pillars of large-scale deep learning
    Hoefler, Torsten
    2021 IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW), 2021, : 908 - 908
  • [38] Large-scale Pollen Recognition with Deep Learning
    de Geus, Andre R.
    Barcelos, Celia A. Z.
    Batista, Marcos A.
    da Silva, Sergio F.
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [39] Learning Deep Representation with Large-scale Attributes
    Ouyang, Wanli
    Li, Hongyang
    Zeng, Xingyu
    Wang, Xiaogang
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 1895 - 1903
  • [40] Deep Learning on Large-scale Muticore Clusters
    Sakiyama, Kazumasa
    Kato, Shinpei
    Ishikawa, Yutaka
    Hori, Atsushi
    Monrroy, Abraham
    2018 30TH INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE AND HIGH PERFORMANCE COMPUTING (SBAC-PAD 2018), 2018, : 314 - 321