Analysis of thin film flows using a flux vector splitting

被引:7
|
作者
Pacheco, JR [1 ]
Pacheco-Vega, A [1 ]
机构
[1] Inst Tecnol Monterrey, Dept Ingn Mecan, Monterrey, Mexico
关键词
D O I
10.1115/1.1538626
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We propose a flux vector splitting (FVS) for the solution of film flows radially spreading on a flat surface created by an impinging jet using the shallow-water approximation. The governing equations along with the boundary conditions are transformed from the physical to the computational domain and solved in a rectangular grid. A first-order upwind finite difference scheme is used at the point of the shock while a second-order upwind differentiation is applied elsewhere. Higher-order spatial accuracy is achieved by introducing a MUSCL approach. Three thin film flow problems (1) one-dimensional dam break problem, (2) radial flow without jump, and (3) radial flow with jump, are investigated with emphasis in the prediction of hydraulic jumps. Results demonstrate that the method is useful and accurate in solving the shallow water equations for several flow conditions.
引用
收藏
页码:365 / 374
页数:10
相关论文
共 50 条
  • [21] KINETIC FLUX VECTOR SPLITTING FOR EULER EQUATIONS
    MANDAL, JC
    DESHPANDE, SM
    COMPUTERS & FLUIDS, 1994, 23 (02) : 447 - 478
  • [22] Flux vector splitting and stationary contact discontinuity
    Dubois, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (09): : 847 - 850
  • [23] NUMERICAL-SOLUTIONS OF EULER EQUATIONS USING SIMPLIFIED FLUX VECTOR SPLITTING
    VONLAVANTE, E
    HAERTL, A
    CLAES, D
    AIAA JOURNAL, 1987, 25 (08) : 1050 - 1051
  • [24] NUMERICAL SOLUTIONS OF EULER EQUATIONS USING SIMPLIFIED FLUX VECTOR SPLITTING.
    von Lavante, E.
    Haertl, A.
    Claes, D.
    1600, (25):
  • [25] Entropy analysis of kinetic flux vector splitting schemes for the compressible Euler equations
    Lui, SH
    Xu, K
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2001, 52 (01): : 62 - 78
  • [26] Entropy analysis of kinetic flux vector splitting schemes for the compressible Euler equations
    S. H. Lui
    K. Xu
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 2001, 52 : 62 - 78
  • [27] A Kinetic Flux Difference Splitting method for compressible flows
    Shrinath, K. S.
    Maruthi, N. H.
    Rao, S. V. Raghurama
    Rao, Veeredhi Vasudeva
    COMPUTERS & FLUIDS, 2023, 250
  • [28] A kinetic flux-vector splitting method for single-phase and two-phase shallow flows
    Zia, Saqib
    Qamar, Shamsul
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 67 (06) : 1271 - 1288
  • [29] FLUX DIFFERENCE SPLITTING FOR OPEN-CHANNEL FLOWS
    GLAISTER, P
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1993, 16 (07) : 629 - 654
  • [30] A flux-splitting scheme for compressible and incompressible flows
    Rossow, CC
    JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 164 (01) : 104 - 122